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a b s t r a c t

Five scenario earthquakes plausible for the Los Angeles metropolitan region, and one numerical
approximation of the 1994 Northridge Mw 6.7 event, provide the database of the proposed methodology
that is applied for the construction of regional earthquake response spectra. The methodology involves
two main stages of data compaction. In the first stage, the Karhunen–Loève (K–L) decomposition of the
excitation temporal covariance matrix is performed. In the second stage, the dominant eigenvectors
are analytically approximated with Chebyshev polynomials, thus being converted from eigenvectors to
eigenfunctions. This compact analytical representation of the nonstationary excitation data provides an
exact closed-form solution for the nonstationary response of linear multi-degree-of-freedom systems.
Furthermore, statistical inference analysis for the response variables is conducted, which leads to the
construction of regional probabilistic response spectra based on the Log-Normal probability model for
the response variables.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A key feature of the ground motion generated by earthquakes
is its transient nature. A typical accelerogram is characterized
by a period of intensity growth, followed by an interval of
almost steady strong shaking and finally a period of decay. For
an accurate representation of a system’s dynamic response to
earthquake excitation, the earthquake loads should be formulated
as a nonstationary stochastic process. A considerable amount of
research into the simulation of nonstationary random processes
was performed in the past. Representative publications in the field
of applied mechanics, which deal with the stochastic response of
dynamic systems, include the work of Caughey and Stumpf [1],
Corotis and VanMarcke [2], Masri [3], Spanos and Lutes [4],
Debchaudhury andGasparini [5], Shinozuka andDeodatis [6], Iwan
and Hou [7], Soong and Grigoriu [8], Lin and Cai [9], and Lutes and
Sarkani [10].
A popular procedure for analytically representing stochastic,

earthquake ground motion time histories is to model them as
zero-mean, white noise processes modulated by a deterministic
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envelope function representing the variation of the mean-square
intensity with time. While this approach is a step in the right
direction, it is not an authentic representation of actual earthquake
spectral contents. On the other hand, when the earthquake ground
motion is modeled as filtered white noise – where the filter may
have constant or time-varying parameters – the nonstationary
solutions do not have a closed form (Conte and Peng [11];
Papadimitriou and Beck [12]).
Masri and Miller [13] proposed a procedure for the compact

covariance kernels’ probabilistic representation (zero-mean,
Gaussian probability density function modulated by a determin-
istic exponential function) in a form that results in the analyti-
cal evaluation for the transient, mean-square response of a linear
single-degree-of-freedom (SDOF) system. This procedurewas later
improved by using the orthogonal Karhunen–Loève (KL) expan-
sion and the least-squares approach to develop an approximate,
analytical fit for the KL-eigenvectors of the random excitation
process (Traina et al. [14]). A few years later, a relatively small
ensemble of ground motion records (66) from the Los Angeles
region for the 1971, San FernandoMw 6.6 earthquake served as the
application database of themethod (Masri et al. [15]). Finally, high-
quality ground motion records from the Los Angeles region due
to the 1994, Northridge Mw 6.7 earthquake furnished an excellent
excitation stochastic process for a multi-degree-of-freedom
(MDOF) response solution analysis (Masri et al. [16]).
In this paper, the potential of the analytical method cited in

the previous studies to provide a procedure for the construction
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of regional response spectra is addressed. Synthesized acceleration
records from several scenario earthquakes plausible for the Los
Angeles basin serve as the excitation stochastic database.

1.1. Motivation

In recent years, major earthquake research projects have been
focusing on developing large-scale computational simulations of
earthquake scenarios for geographic regions that span hundreds
of kilometers. Long-term goals of such simulations include a com-
prehensive physics-based understanding of complex earthquake
phenomena, reliable prediction of ground velocities that are ex-
pected to shake the infrastructure above ground, and identification
of high-risk areas expected to sustain theworst impact. The output
of such simulations yields large data files with size that reaches
terabytes, making the tasks of data-management and data-
archiving particularly challenging. Representative publications in
the field of large-scale computational earthquake simulations in-
clude the work of Maechling et al. [17], Faerman et al. [18], Olsen
et al. [19] and [20], and Benites and Olsen, [21].
This paper addresses the challenge of incorporating the

emerging knowledge of this state-of-the-art earthquake research
into building codes that engineers can apply to the performance-
based design of earthquake-resistant structures.

1.2. Scope

As the number of available strong motion records from
future earthquakes will keep increasing, due to the expansion of
seismological instrumentation worldwide, the proposed compact
probabilistic method can be extensively applied and its efficiency
significantly enhanced. The data-processing methodology is not
only a useful data-archiving and earthquake feature-extraction
tool, but can also accurately quantify the average seismic risk in a
probabilistic format over a spatially extended area. Eventually, the
methodology can lead to the construction of regional, probabilistic
design spectra that will take into account the nonstationarity of
both the earthquake excitation and the response.
Synthetic accelerograms of five scenario earthquakes for the

Los Angeles basin, and one numerical approximation of the 1994
Northridge Mw 6.7 event provide an excellent database to test
themethodology. The extreme root-mean-square (rms) spectra for
a linear SDOF system are directly calculated from the analytical
solution of the nonstationary response, and compared with
ensemblemean response quantities derived from the conventional
response spectrum analysis. To construct probabilistic response
spectra with a prescribed confidence interval, the appropriate
probability model that could best describe the distribution
characteristics of the response spectra variables (accelerations,
velocities, and displacements) needs to be determined. A statistical
inference analysis of the response parameters is performed
towards that goal.
The material is organized as follows:
• Section 2: Analytical formulation for nonstationary excitation
propagation. Derivation of closed-form solution for the re-
sponse covariance of an MDOF system due to nonstationary
support excitation.
• Section 3: Description of the Los Angeles basin model, and the
earthquake scenarios’ simulation data.
• Section 4: Derivation and comparison of synchronous and
asynchronous earthquake acceleration covariance matrices.
Orthogonal decomposition of synchronous acceleration co-
variances, and eigenvector approximation with Chebyshev
polynomials.
• Section 5: Response spectra construction for each earthquake
scenario based on (a) extreme standard deviation values, and
(b) mean response values across the records’ ensemble.
• Section 6: Investigation of appropriate probability model
for response spectra variables. Construction of probabilistic
response spectra. Superposition of extreme rms and percentile
curves.
• Section 7: Conclusions and recommendation for future
research.

2. Formulation

The data compaction of the system’s input excitation is
performed in two steps:
(1) The spectral decomposition of the input covariance matrix is
calculated, and only the dominant eigenvectors are retained. (2)
The dominant eigenvectors are then least-squares fitted with a
series of Chebyshev orthogonal polynomials. This data compaction
method permits the closed-form solution for a linear, dynamic
system’s nonstationary response to random excitation (Traina
et al. [14]; Masri et al. [16]). Following is a brief overview of this
procedure.

2.1. Eigenvector expansion of the covariance matrix

The covariance kernel [C] for a system with support accelera-
tion s̈(t) is a symmetric, square matrix with values defined as

Cs̈s̈(t1, t2) = E[(s̈(t1)− µs̈(t1))(s̈(t2)− µs̈(t2))] (1)

where E[·] is the expectation operator, andµs̈(t) is themean value
of the support acceleration at time t . Using the Karhunen–Loève
expansion, the spectral representation of the [C]matrix of order n
by nmay be expressed as

[C] =
n∑
i=1

λipip
T
i (2)

where λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 are the real and positive
eigenvalues of [C], and p1, p2, . . . , pn are the corresponding
normalized eigenvectors such that pTi pj = δij, for i = 1, 2, . . . , n.
In most cases, only a small fraction k out of a total n eigenvalues
are likely to reconstruct the covariance matrix [Ck]. Matrix [Ck]
represents the reconstruction of the covariancematrix by using the
first largest eigenvalues k out of a total n eigenvectors, and matrix
[Ek] contains the error due to the eigenvector truncation:

[C] =
k∑
i=1

λipip
T
i +

n∑
i=k+1

λipip
T
i = [Ck] + [Ek]. (3)

2.2. Least-squares fit of eigenvectors

The second step in the data condensation procedure involves
the approximation of the truncated set of k discrete eigenvectors
with continuous analytical functions. Chebyshevpolynomialswere
chosen for the least-squares approximation because, in addition
to being orthogonal, they have the desirable feature of equal-
error approximation within an interval of interest, as well as
being convenient for defining analytical solutions for the dynamic
system response.
The approximated covariance matrix [Ĉk] can then be recon-
structed, and expressed in terms of a Chebyshev polynomial series
(Masri et al. [15]):

[Ĉk(t1, t2)] =
k∑
i=1

λi

mi−1∑
j=0

mi−1∑
`=0

Hij Hi` Tj(t ′1) T`(t
′

2), (4)

where the T ’s are the Chebyshev polynomials, Hij is the coefficient
of the Chebyshev polynomial of order j associated with the
eigenvector pi, mi is the number of Chebyshev polynomials used,
and 0 ≤ ti ≤ tmax for i = 1, 2.
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2.3. Nonstationary excitation propagation

The analytical representation of the input acceleration covari-
ance matrix (Eq. (4)) permits the closed-form response solution
for a multi-degree-of-freedom (MDOF), linear, viscously damped
(and not necessarily of the proportional type), dynamic system.
The system’s response is arranged in a 2n-dimensional vector of
the form

{y(t)} =

{ x(t)
−−−

ẋ(t)

}
(5)

where {y(t)} is the state vector, and defines the state of the system
uniquely for any time t . In this application, the n-dimensional
vectors x(t) and ẋ(t) are the nodal, relative displacements and
velocities with respect to the support position. The system of
differential equations ofmotion for anMDOF linear system excited
by a base excitation s̈(t) is given in matrix form by

[M]{ ẍ(t)} + [C]{ẋ(t)} + [K ]{x(t)} = −[M]{e}s̈(t) (6)

where [M], [C], and [K ] are the n × n mass (diagonal), damping,
and stiffness matrices, respectively, and {e} is the n-dimensional
unit vector.
To derive the closed-form solution for the response covariance

matrix of a MDOF system due to a support nonstationary
excitation, analytical representation of Chebyshev polynomials
and integrals in a finite series form are constructed. Since the
focus of this paper is the application of existing analytical tools
to develop seismic response spectra, the intermediate steps of
the theoretical derivation are omitted. A detailed treatment of the
closed-form solution of the nonstationary response can be found
in the thesis by Smyth [22] and in the work of Masri et al. [16]. The
development of the seismic response spectra in this paper is based
on an SDOF representation of the response covariance.

3. Application

3.1. Los Angeles basin model and earthquake scenarios

The metropolitan area of the greater Los Angeles region lies
on top of a deep sedimentary basin. During past earthquakes,
such as the 1985, Mw 8.1 Michoacan, and the 1989, Mw 6.9
Loma Prieta events, it was observed that ground motions in
basins get significantly amplified, as was the case in Mexico City,
and the Marina district of San Francisco. To obtain a confident
estimate of a particular site’s basin response, all the possible
regional earthquake scenarios need to be included in a probabilistic
seismic hazard analysis. In this study, the following five scenario
earthquakes, all plausible for the Los Angeles region, and a
numerical approximation of the 1994,Mw 6.7 Northridge event are
examined:
(1) A blind thrust on the Elysian Park fault (EP); (2) Thrust on the

SantaMonica fault (SM); (3) Northwest propagating rupture on the
Newport–Inglewood fault (NI); (4) Southeast propagating rupture
(SAFSE); and (5) Northwest propagating rupture on a 170 km long
stretch of the San Andreas fault (SAFNW); (6) Approximation of the
1994, Mw 6.7 Northridge (NOR) earthquake.
These earthquake simulations were developed by Olsen [23] to

explore the ground motion amplification of seismic waves in the
deep Los Angeles basin. They are all within the ‘‘geological rea-
sonable scenarios’’ defined by Dolan et al. [24]. The rupture pa-
rameters for the six earthquake simulations are given in Table 1.1

1 A comprehensive treatment of the underlying physics of the wave propagation
in the Los Angeles basin for the earthquake simulations can be found in Olsen [25]).
Fig. 1. Topographicmap of Southern California. The larger rectangular area depicts
the extent of the model for the San Andreas Fault (SAF) scenarios. The smaller
rectangle shows the region used for modeling the remaining scenarios.

Fig. 2. Topographic map of the Los Angeles basin area with the surface projections
of the fault planes associated with the earthquake scenarios: Santa Monica
(SM), Elysian Park (EP), Newport–Inglewood (NI), Palos Verdes (PV), 1994 M 6.7
Northridge (NR).

A topographic map of southern California is illustrated in Fig. 1.
The larger rectangular area depicts the extent of the model
for the San Andreas Fault (SAF) scenarios. Within the smaller
rectangular area, which is shown in Fig. 2 along with the sur-
face projections of the fault planes, lies the region for which
the remaining scenarios are simulated. The reference frame of
the numerical model was rotated 28◦ counterclockwise from
the North, to minimize the computational requirements for the
simulations. Throughout the present study, the horizontal ground
motions and the subsequent response parameters are analyzed
along the azimuths of 118◦ (x-axis), and 28◦ (y-axis). The model
of the extended Los Angeles basin spreads over an area of
155 km × 134 km × 34 km, and is discretized with a grid spac-
ing of approximately 0.4 km for a total of 388 × 337 × 85
(= 11,114,260) grid points. It includes the Los Angeles basin, the
smaller San Fernando basin to the northwest separated from the
Los Angeles basin by the SantaMonicamountains, and the Ventura
basin continuing to the North. A relatively small basin is located
below the San Gabriel Valley, and the larger, but shallower
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Table 1
Earthquake rupture parameters (after Olsen).

EP SM NI SAFNW SAFSE NOR

Hypocenter

Longitude (deg) −118.20 −118.64 −118.24 −118.66 −117.09 −118.53
Latitude (deg) 34.10 34.06 33.88 34.79 34.09 34.20
Depth (km) 14.8 10.4 7.6 4.0 15.2 17.6

Fault parameters

Width (km) 21 17 15 16 16 24
Length (km) 16 37 41 170 170 18
Depth to top (km) 10.5 0.4 0.4 0.4 0.4 5.0
Dip (deg) 25 65 90 90 90 40
Strike (deg) 298 260 138 118 118 118
Rake (deg) 90 90 180 180 180 101
Moment magnitude 6.75 6.75 6.75 7.5 7.5 6.7
Table 2
Los Angeles basin 3D modeling parameters (after Olsen).

Spatial discretization (km) 0.4
Temporal discretization (s) 0.25
Lowest P-wave velocity (km/s) 2.41
Lowest S-wave velocity (km/s) 1.0
Lowest density (kg/m3) 2070
Number of time steps 360,500 (Northridge)
Total simulation time (s) 90,125 (Northridge)

Chino basin, which extends the LA basin to the East. The topogra-
phy above sea level was not included. The three-dimensional (3D)
modeling parameters are listed in Table 2.

3.2. Limitations of the Los Angeles basin amplification study

According to Olsen [25], the main limitations of the average
amplification map for the Los Angeles basin area were primarily
due to the relatively small number of scenario earthquakes
(nine in the original study) that were used in the research
study and the maximum frequency (0.5 Hz) used for the ground
motion simulation, and secondarily, to uncertainties concerning
the accuracy of the basin model, and the omission of surface
layers with shear velocities less than 1 km/s. It is important to
incorporatemore simulations of geologically reasonable scenarios,
in order to reduce the uncertainty of the average amplification
ratios,2 and also to increase the highest frequencies, to capture
the entire spectrumof amplification effects. Considering the recent
explosive increase in computational power, it may be feasible
to construct more accurate amplification maps in future studies
with broader frequency content derived from smaller model grid
spacing. These maps should include the effects of realistic rupture
parameters, and anelastic attenuation as well.

3.3. Velocity records

The synthetic velocity seismograms were low-pass filtered to
frequencies less than 0.5 Hz (Butterworth filter with four poles and
two passes). There were three sets of records – 118◦ (X-direction),
28◦ (Y -direction), and vertical (Z-direction) – for each simulation,
which brings the total number of processed sets to 18. Each velocity
record corresponds to a grid point of the basin’s modeled region
that covers a total area of 115 km × 95 km. The total number
of grid points on the ground surface is 301 × 216, resulting
in 195,048 particle velocity surface records for each earthquake

2 Amplification is quantified as the peak velocity obtained from the 3D simulation
divided by that predicted using a regional one-dimensional (1D) crustal model.
scenario simulation. Each record has a 90 s duration (125 s for the
Northridge records), and a sampling rate dt = 0.25 s.
Themaximum absolute horizontal particle velocitymagnitudes

range for the horizontal directions from 0.767 m/s (San Andreas
NW) to 4.168 m/s (Newport–Inglewood) and for the vertical
from 0.286 m/s (San Andreas NW) to 4.278 m/s (Santa Monica).
Since the narrow-band frequency content of the simulated time
histories is limited to frequencies less than 0.5 Hz, and the near-
surface S-wave velocity’s upper bound is 1.0 km/s, these values
are estimated to be lower bounds of the expected ground motion
velocities in the near source area. Future simulations that would
result from signals with a wider frequency content, and more
realistic values for the surface S-wave velocity, would give rise to
higher ground velocities and accelerations.

3.4. Acceleration records

To derive the ground acceleration time histories, a numerical
differentiation by fitting a moving three-point quadratic polyno-
mial (y = a0 + a1x+ a2x2) to the ground velocity record data was
performed. A three-point analytical fitwas chosen instead of a five-
point fit (y = a0 + a1x + a2x2 + a3x3 + a4x4), which, intuitively,
would have resulted in higher accuracy, because the accuracy of
the three-point fit proved to be adequate when applied to the low
frequency velocity signals (4 samples/s).
The cumulative absolute velocity (CAV), a severity indicator of

an acceleration time history, was calculated for each record. The
CAV, defined as the area under the absolute acceleration versus
time duration curve, is given by CAV =

∫ tmax
0 |α(t)| dt . The three

acceleration records with the maximum root square of the sum

of the squares (RSSS) CAV (
√
CAV2X + CAV

2
Y + CAV

2
Z )magnitude of

40.34 m/s resulted from the Newport–Inglewood dataset. The X-
direction acceleration record and the corresponding fast Fourier
transform (FFT) diagram are given in Fig. 3. The narrow-band
nature of the signal (< 0.5 Hz) is evident in the FFT plot.
Particle acceleration propagation snapshots of the San Andreas, SE
propagating rupture (X-direction) are shown in Fig. 4.

4. Synchronous and asynchronous covariances

The temporal covariance matrices of order 360 × 360 (500
× 500, for the Northridge sets) extending over a time span of
90 s (125 s, for the Northridge sets) were constructed from the
velocity and acceleration record ensembles. In general, the order
of the covariance matrices is not constant, but depends on the
number of samples in the signal. The covariance matrices were
calculated twice: first, from the unprocessed, unsynchronized
records, and second, from records that were synchronized at the
trigger threshold value of 1% rms for each ensemble.
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Fig. 3. Acceleration time history (left side) and its FFT diagram (right side) of the record with the largest root square of the sum of the squares (RSSS) cumulative absolute
velocity (CAV) value. The record is from the Newport–Inglewood X-direction dataset.
(a) t = 18.0 s. (b) t = 27.0 s.

(c) t = 36.0 s. (d) t = 54.0 s.

(e) t = 63.0 s. (f) t = 81.0 s.

Fig. 4. Six 3D particle acceleration snapshots from the San Andreas, SE propagating rupture (X-direction). The horizontal axes are the basin’s kilometric distances and the
vertical axis is the acceleration amplitude.
The velocity ground motion records were asynchronous
because they captured the wave propagation effect through the
extended Los Angeles region. The synchronization of records was
performed by shifting the velocities and accelerations in the time
domain. The rms value for each record ensemble was calculated,
and the first sample (t = 0) of each record was set to 1% of the
ensemble rms. It was expected the record synchronization would
result in a conservative estimate for the covariance amplitudes.
The synchronization of the groundmotion records, indeed, gave
rise to slightly larger covariance amplitudes as expected. This is
clearly evident in Fig. 5(a–f), where the two variance time histories
which depict the time variations of the mean-square accelerations
(combined X , Y , and Z direction) are plotted for all six simulations.
The covariance amplitudes from the synchronized records, besides
being amplified, were also time-shifted in the case of the San
Andreas NW (Fig. 5a), and San Andreas SE (Fig. 5b) scenarios.



516 E. Kallinikidou et al. / Probabilistic Engineering Mechanics 24 (2009) 511–526
(a) San Andreas NWmean acceleration variance. (b) San Andreas SE.

(c) Newport–Inglewood. (d) Elysian Park.

(e) Santa Monica. (f) Northridge.

Fig. 5. Comparison of the synchronous (solid lines) and asynchronous (dashed lines) acceleration variances for all six scenario earthquakes.
These synchronization effects, which are directly related to the
wave propagation patterns in the basin model, were due to the
extended rupture duration, in excess of 60 s, that resulted in a
much prolonged basin ground motion excitation (Olsen [25]).
On the other hand, for theNorthridge simulation (Fig. 5f), where

the duration of shaking in the basin was short, with most of the
energy being dissipated in the first 30 s of excitation, the two
variance curves coincided. The largest mean variance amplitude
of the particle accelerations (0.228 (m/s2)2) was calculated from
the Newport–Inglewood scenario datasets (Fig. 5c). The particle
acceleration covariancematrices – synchronous and asynchronous
– for the San Andreas SE X, Y , and Z datasets are plotted in
Fig. 6(a–f). As expected, the covariance surfaces are symmetrical
with respect to their diagonal, where the largest amplitudes are
located; the off-diagonal terms converge rapidly to zero.

4.1. Eigenvector expansion of the covariance matrices

The spectral decomposition of the temporal particle velocity
and acceleration covariances resulted in 360 eigenvalues λk (500
eigenvalues for the Northridge case), and their corresponding
eigenvectors ek. Although the main focus of the following discus-
sion is placed on the acceleration covariances – subsequently, the
acceleration covariances are included in the non-stationary re-
sponse solution for an MDOF linear system formulation – similar
observations could be applied to the analytical behavior of the
velocity covariances.
The first two eigenvectors of the synchronous and asyn-

chronous acceleration covariances from the San Andreas SE record
ensemble (X-direction) are presented in Fig. 7(a, b). Themagnitude
amplification and the time-shift observed by the comparison of the
two covariance surfaces (Fig. 6) are also apparent in the eigenvec-
tor plots.
Furthermore, the eigenvalue series λk, k = 1360 converges

to zero after the first ≈50 values (Fig. 8). All the eigenvalues
λk with indices k > 30 have magnitudes less than 10% of
the first eigenvalue λ1, as illustrated by the steep convergence
curve of the normalized eigenvalues—normalized with respect to
the first (largest) eigenvalue. Therefore, for the first step of data
compaction, only the significant eigenvalues and eigenvectors, out
of the original 360, are needed to reconstruct the acceleration
covariance matrices.
Truncated eigenvalue series λk, k = 160 from the six

earthquake datasets are presented in Fig. 9. Note that different
amplitude (ordinate) scales are used for the various earthquakes.
All the eigenvalues beyond the cutoff index of 40 (15 for the
Elysian Park case) are practically zero. The total area under
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(a) X-direction, synchronous acceleration records. (b) X-direction, asynchronous acceleration records.

(c) Y -direction, synchronous acceleration records. (d) Y -direction, asynchronous acceleration records.

(e) Z-direction, synchronous acceleration records. (f) Z-direction, asynchronous acceleration records.

Fig. 6. Comparison of the covariance matrices for the synchronous (left side: a, c, e) and asynchronous (right side b, d, f) acceleration records for the San Andreas, SE
propagating rupture scenario earthquake.
(a) First e-vector of the X-direction acceleration
covariances.

(b) Second e-vector of the X-direction acceleration
covariances.

Fig. 7. (a) and (b): The time histories of the first two eigenvectors of the synchronous (solid lines) and asynchronous (dashed lines) acceleration covariances from the San
Andreas SE (X-direction) record ensemble.
the individual eigenvalue curves for each X, Y , and Z direction
is a qualitative estimator of the three-dimensional earthquake
energy distribution in the basin. For example, the superimposed
covariance eigenvalue plots from the Santa Monica scenario
(Fig. 9c) depict an equipartition of energy for the basin’s horizontal
directions. In addition, significant energy distribution in the
vertical Z direction is observed for the Santa Monica (Fig. 9c) and
Northridge (Fig. 9f) simulations.
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(a) E-values of the X-direction acceleration covariances. (b) Normalized e-values of the X-direction acceleration
covariances.

Fig. 8. Part (a) shows the magnitudes of the eigenvalues of the synchronous and asynchronous acceleration covariances from the San Andreas SE (X-direction) record
ensemble. Fig. (b) shows the first 60 normalized eigenvalues.
(a) San Andreas SE: X, Y , and Z . (b) San Andreas NW: X, Y , and Z .

(c) Santa Monica: X, Y , and Z . (d) Elysian Park: X, Y , and Z .

(e) Newport Inglewood: X, Y , and Z . (f) Northridge: X, Y , and Z .

Fig. 9. Comparison of eigenvalues’ amplitudes of the X, Y , and Z direction synchronous acceleration covariances for the six earthquake datasets plotted as a function of the
eigenvalue index i. Note that different ordinate scales are used for the different scenarios.
4.2. Covariance reconstruction and eigenvector approximation with
Chebyshev polynomials

To demonstrate the quality of fit for the covariance reconstruc-
tion, the diagonals of the original acceleration covariance matrix
[C], and the reconstructed [Ck], where k is the number of eigen-
values/eigenvectors that define the truncation level, are plotted
in Fig. 10(a, b). As k increases (k = 10 for Fig. 10a, and k = 20
for Fig. 10b), the quality of the variance fit improves, and the
error function Ek = [C] − [Ck] gradually decreases; for k = 40
the error function Ek approximates zero, and the two variances
coalesce. The inclusion of eigenvectors/eigenvalues beyond the
first 40 would not have further improved the quality of the recon-
structed covariance.
The second data compaction step includes the least-squares fit

of the truncated eigenvectors series with Chebyshev polynomials.
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(a) SAFSE X acceler. synchr. variances (k = 10). (b) SAFSE X acceler. synchr. variances (k = 40).

Fig. 10. Time histories of exact variances C(t, t), reconstructed variances Ck(t, t), and error plots Ek(t, t) plotted for eigenvector truncation parameter k = 10 (a) and k = 40
(b), for the San Andreas SE X-direction synchronous acceleration records.
(a) SAFSE X acceler. synchr. variances (k = 40,m = 75). (b) SAFSE X acceler. synchr. variances (k = 40,m = 175).

Fig. 11. Time histories of exact variances C(t, t), reconstructed variances Cmk (t, t), and error plots E
m
k (t, t) plotted for the same eigenvector truncation parameter k = 40,

and different values of the Chebyshev orderm (m = 75 (a),m = 175 (b)), for the San Andreas SE X-direction synchronous acceleration records.
Fig. 12. Logarithmic plot showing the correlation of the normalized error
index between the exact and reconstructed variance for increasing values of the
Chebyshev polynomial orderm (San Andreas SE, X-direction dataset).

The optimality of the Chebyshev polynomial fit is illustrated
in Fig. 11(a–b), where the exact C(t, t) and the reconstructed
variances Cmk (t, t), k = 40 are plotted for increasing values of the
polynomial order (m = 75, and 175). The optimal value for the
order of the polynomial fit was m = 175, as indicated in Fig. 12,
where the log of the summation error function [Emk=40] = Σ([C] −
[Cmk ])

2 versus the polynomial orderm is plotted. If the eigenvectors
had a wider frequency content, a higher Chebyshev polynomial
order would have been required to achieve the optimum quality
of fit. For the present study, an increase of the current Chebyshev
order m = 175 would not have improved the analysis accuracy,
but would only have increased the computational time.

5. Construction of response spectra

The transient mean-square response time histories of a single-
degree-of-freedom (SDOF) system with a critical damping ratio
of ζ = 0.01, 0.05, and 0.10 were obtained from the closed-
form analytical expression for the response covariance by setting
t1 = t2 = t . Note that the analytical solution provides a
measure of the variance (i.e., uncertainty with respect to the
mean). If the ensemble mean is zero, then the root-mean-square
(rms) is the same as the response standard deviation. The six
scenario earthquake approximating covariances, used as input,
were reconstructed with the first 40 eigenvectors of the original
covariances that had been least-squares fitted by Chebyshev
polynomials of order m = 175. A sample root-mean-square time
history of a representative SDOFwith a natural frequency of 0.2 Hz
and critical damping ratio of ζ = 0.01 is shown in Fig. 13 (a,b).
Fig. 13 (a) depicts the rms values of the relative displacements, and
Fig. 13 (b) depicts the rms values of the relative accelerations. The
maximum values of the rms response of a damped SDOF system
are given by

Rd (T , ζ ) ≡
√
max
t
{E[y2(t)]} (7)

Rv (T , ζ ) ≡
√
max
t
{E[ẏ2(t)]} (8)

where E[y2(t)] and E[ẏ2(t)] are the mean-square displacement,
and velocity response time histories, respectively.
For each scenario earthquake, the E[y2(t)] and E[ẏ2(t)]

response time histories were calculated with input acceleration
covariances derived from the horizontal (combined X and Y
direction), and vertical (Z direction) datasets. The computed
maximum values Rd and Rv of the rms responses were plotted
versus period values T . A total of 24 maximum rms spectral plots
(6 scenarios× 2 directions× 2 response variables) were obtained.
Representative plots for the San Andreas SE scenario are shown on
the left side column in Figs. 14 and 15. The three curves in each plot
correspond to damping ζ = 0.01, 0.05, and 0.10. The amplitudes
of the response values for all spectral plots are significant for
periods larger that 2 s. This result is expected due to the limited
frequency bandwidth (n < 0.5 Hz) of the input acceleration
records.
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(a) rms displacement time history. (b) rms velocity time history.

Fig. 13. Transient root-mean-square response of an SDOF system with frequency of 0.2 Hz, and critical damping ratio of 1%, for the Northridge (X-direction) scenario
earthquake.
(a) San Andreas SE: Extreme rms[V ], XY -direction. (b) San Andreas SE, E[SV], XY -direction. (c) San Andreas SE: Extreme rms[V ], Z-direction.

(d) San Andreas SE, E[SV], Z-direction.

Fig. 14. Response spectra for maximum rms velocities rms[V ] (left side), andmean peak velocities SV (right side) for the combined X and Y horizontal (a and b), and vertical
Z (c and d) datasets from the San Andreas SE scenario earthquake.
Furthermore, for each synthetic acceleration record, the
response of an SDOF linear system subjected to input acceleration
was calculated by solving analytically the classic differential
equation of motion in a computationally efficient fashion3:

ẍ+ 2ζωẋ+ ω2x = f (t). (9)

The peak absolute values of the response time histories (SA:
absolute acceleration, SV: relative velocity, and SD: relative
displacement) were plotted versus period values T , and damping
ratios ζ = 0.01, 0.05, and 0.10 to form the response spectra.
For each of the six scenario record ensembles, the mean SA,
SV, and SD values were thus calculated. The horizontal datasets
(X and Y direction) were combined in one group to comply with
the data processing scheme followed for themaximumrms spectra
calculation. The size of each record ensemble (X , Y , and Z direction)

3 The analytical solution of the second-order differential equation is given in
Nigam and Jennings [26]
was n = 65,016 for the Northridge, and n = 68,256 for the
remaining scenarios. Representative mean response spectra plots
for the San Andreas SE scenario are shown on the right side
columns in Figs. 14 and 15. For ease of comparison, identical
amplitude and period scales are used for the two types of response
plots.4
It is worth keeping inmind that the two response plots (left and

right columns of Figs. 14 and 15) are qualitatively different: one
tracks the maximum rms values of the nonstationary responses
obtained at one specific time instant (or else the maximum
standard deviation of the response), while the other provides an
average of the response peaks, each one occurring at a different
time. The question that arises is which of the two plots an engineer
could use to estimate the expected peak responses (velocities,
displacements or accelerations) for his design. In general, one

4 Plots for the mean peak and maximum root-mean-square responses are
available for the remaining scenarios, but are not included in this paper due to size
constraints.
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(a) San Andreas SE: Extreme rms[SD], XY -direction. (b) San Andreas SE, E[SD], XY -direction. (c) San Andreas SE: Extreme rms[D], Z-direction.

(d) San Andreas SE, E[SD], Z-direction.

Fig. 15. Response spectra for maximum rms displacements rms[D] (left side), and mean peak displacements SD (right side) for the combined X and Y horizontal (a and b),
and vertical Z (c and d) datasets from the San Andreas SE scenario earthquake.
(a) SAFSE X-direction: Frequency graph for SA. (b) SAFSE X-direction: Empirical cdf for SA.

Fig. 16. Frequency and cumulative distribution frequency (cdf) diagrams for the peak accelerations of a linear oscillator with a period of 4 s and damping ζ = 0.01 for the
San Andreas SE X-direction dataset).
would like to multiply either the rms or the average peak
response with amplification factors to get an estimate of the
expected maximum response. But without attaching a probability
distribution model to the response peaks, it is not possible
to establish confidence intervals for the expected value of the
maximum response.

6. Statistical inference of the response spectra variables

In order to construct probabilistic response spectra with a
prescribed confidence interval, first the appropriate probability
model that could best describe the distribution characteristics
of the peak response variables (accelerations, velocities, and
displacements) needs to be determined. Frequency and cumulative
distribution diagrams of the peak response variables for k = 1200
intervals were constructed for all data samples. The diagrams of
a linear oscillator having a natural period of 4 s (ζ = 0.01)
are presented in Fig. 16. An initial visual inspection of the
sample histograms indicates that the assumption of a Log-Normal
probability distribution model for the peak response variables is
plausible. Similar histogram shapes (that are not presented herein)
were observed for the peak responses of oscillators with other
period values. Furthermore, the observed response sample data
were plotted versus the linear probability scales of the following
assumed distributions: Log-Normal,Weibull, Frechet, and Gamma.
The data points should follow a linear trend, if the assumed
distribution is an appropriate model for the data.
Based on the quality of the linearity that these probability plots

exhibited, the following distributions were chosen as the most
promising candidates for a potential suitable probability model
for the spectral response variables of interest: (a) Two-parameter
Log-Normal; (b) Three-parameter Log-Normal; (c) Two-parameter
Weibull; (d) Two-parameter Gamma.

6.1. Parameter estimation for the candidate distributions

The optimal parameter estimators of the chosen distributions
were determined with the maximum likelihood (ML) method (Ang
and Tang [27]).5 The final parameters of the distributions were

5 The initial estimation of the distribution parameters for each sample of the
observed frequencies was based on the formulas given in [27].
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Table 3
Estimated parameters and normalized least-square errors for the Northridge (X-direction) response spectra variables.

T (s) Earthquake approximation: Northridge (X-direction)
Log-Normal (two-parameter) Log-Normal (three-parameter)
µ σ χ (a) ε(b) δ µ σ χ ε

SA (1% damping)

1 −2.614 1.136 102.262 0.121 0.005 −2.700 1.210 95.057 0.111
2 −1.244 1.100 11.454 0.053 0.014 −1.329 1.171 10.451 0.05
3 −1.128 0.990 12.183 0.037 0.029 −1.216 1.063 11.569 0.038
4 −1.526 0.999 14.855 0.038 0.023 −1.592 1.062 13.276 0.029
5 −1.986 1.034 56.865 0.144 0.010 −2.079 1.137 54.858 0.127
6 −2.275 0.928 29.128 0.035 0.018 −2.39 1.034 27.632 0.028
7 −2.678 0.906 65.923 0.053 0.009 −2.847 1.039 43.946 0.02
8 −3.132 0.886 95.185 0.040 0.005 −3.300 1.042 65.317 0.019
9 −3.503 0.849 218.087 0.073 0.004 −3.676 0.996 289.162 0.109
10 −3.879 0.844 315.602 0.052 0.002 −4.027 0.954 291.101 0.056

SV (1% damping)

1 −5.462 1.142 1403.72 0.114 0.0003 −5.562 1.234 1312.550 0.109
2 −2.486 1.108 34.881 0.047 0.004 −2.563 1.186 32.367 0.046
3 −1.864 0.993 25.386 0.034 0.011 −1.943 1.064 24.357 0.036
4 −1.939 1.002 22.683 0.037 0.007 −2.015 1.074 20.447 0.028
5 −2.136 1.040 77.20 0.160 0.009 −2.227 1.154 77.230 0.147
6 −2.196 0.941 34.383 0.054 0.008 −2.305 1.041 32.036 0.05
7 −2.394 0.921 43.697 0.058 0.012 −2.563 1.067 32.612 0.035
8 −2.629 0.942 78.356 0.095 0.008 −2.784 1.060 61.673 0.075
9 −2.761 0.923 108.037 0.093 0.005 −2.894 1.032 107.575 0.109
10 −2.915 0.947 106.378 0.053 0.005 −3.057 1.055 96.735 0.055

SD (1% damping)

1 −6.278 1.124 4091.5 0.123 0.0001 −6.381 1.213 3781.684 0.109
2 −3.540 1.100 113.252 0.053 0.001 −3.611 1.171 103.326 0.046
3 −2.603 0.990 51.847 0.037 0.007 −2.690 1.064 50.571 0.036
4 −2.440 0.999 36.817 0.037 0.004 −2.505 1.085 34.137 0.028
5 −2.450 1.034 90.477 0.143 0.007 −2.542 1.137 87.064 0.147
6 −2.369 0.928 32.569 0.035 0.016 −2.483 1.035 30.693 0.05
7 −2.455 0.894 52.876 0.052 0.012 −2.636 1.039 35.430 0.035
8 −2.652 0.899 59.358 0.042 0.012 −2.803 1.003 39.388 0.075
9 −2.789 0.862 106.748 0.076 0.007 −2.963 0.996 137.151 0.109
10 −2.948 0.844 121.766 0.051 0.009 −3.084 0.926 108.996 0.055

(a) χ =
∑n
i=1

(pi−ei)2

pi
; (b) ε =

∑n
i=1(pi−ei)

2∑n
i=1 p

2
i

chosen from a parametric optimization process which minimized
the chi-square quantity

χ =

k∑
i=1

(ni − ei)2

ei
(10)

where n1, n2, . . . , nk (k = 1200) were the observed frequencies,
and e1, e2, . . . , ek (k = 1200) the assumed theoretical frequencies.
For each tested distribution, the error quantityχ was calculated for
the parameter values taken from the following intervals:

Log-Normal: 0.85 σ̂ ≤ σ ≤ 1.15 σ̂ ; 0.85 µ̂ ≤ µ ≤ 1.15 µ̂;
δ̂ ≤ δ ≤ 2.0 δ̂
Weibull: 0.7 σ̂ ≤ σ ≤ 1.0 σ̂ ; 0.7 λ̂ ≤ λ ≤ 1.0 λ̂
Gamma: 0.5 σ̂ ≤ σ ≤ 2.0 σ̂ ; 0.5 λ̂ ≤ λ ≤ 2.0 λ̂
(σ̂ , µ̂, λ̂: initial parameter estimators; δ̂: min. of response spectra
variable samples).

The optimization procedure used in this task was based on a trial-
and-error process. The interval limits were chosen through an
iterative process, which predetermined the best plausible range
of values for minimizing the quantity χ . The optimum parameter
estimators for a Log-Normal (two and three parameters) model,
along with the error quantities χ and ε, for the Northridge X-
direction response spectra variables are presented in Table 3. For
all response samples, the smallest values of the error quantities
were for the period values between 2 and 4 s. In particular, by
comparing the minimum error quantities, among the assumed
candidate distributions – Log-Normal, Weibull, and Gamma – the
Log-Normal was found to be the most suitable for the observed
frequencies of all three response samples: spectral accelerations,
velocities, anddisplacements. The application of a three-parameter
Log-Normal distribution reduced the error quantities, mostly for
the 2 s ≤ T ≤ 5 s period range, but overall did not significantly
improve the quality of fit.
Furthermore, the validity of the distributions was statistically

verified by the chi-square test. The distribution of the quantityχ Eq.
(12) as k → ∞ approaches the chi-square (χ2f ) distribution with
(f = k − 1) degrees of freedom, where k is the number of pairs
for the observed and expected frequencies (Hoel, Chapter 9) [28];
k = 1200 in the present study. If an assumed distribution yields

χ =

k∑
i=1

(ni − ei)2

ei
< c1−α,f (11)

where c1−α,f is the value of the appropriate χ2f distribution at
the cumulative probability (1 − α), the assumed theoretical
distribution is an acceptable model, at the significance level α. The
c1−α,f values of the χ2f distribution with f = 1197, and f =
1196degrees of freedom for a two-parameter and three-parameter
assumed distribution respectively are presented in Table 4.6
All the assumed distributions yielded χ values that were less

than the χ2f (f = 1196 and 1197) variables of Table 4. Therefore,

6 The degree of freedom f of the χ2f distribution is reduced by one for every
unknown parameter that must be estimated [27].
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(a) T = 4 s, ζ = 0.01 cr., µ = 0.067, σ = 1.002. (b) T = 4 s, ζ = 0.01 cr., µ = 0.067, σ = 1.002.

(c) T = 4 s, ζ = 0.01 cr., µ = −0.363, σ = 1.015. (d) T = 4 s, ζ = 0.01 cr., µ = −0.363, σ = 1.015.

(e) T = 4 s, ζ = 0.01 cr., µ = −0.816, σ = 0.989. (f) T = 4 s, ζ = 0.01 cr., µ = −0.816, σ = 0.989.

Fig. 17. Comparison between Log-Normal, and empirical probability density function (pdf) and cumulative distribution function (cdf) plots for the spectral response
measures of a linear oscillator having a natural period of 4 s (damping ζ = 0.01; the dataset is San Andreas SE X-direction). The left sides of the plots correspond to
the pdfs of the indicated spectral response measures, while the right sides of the plots correspond to the respective cdfs. The first row shows spectral accelerations SA;
second row, spectral velocities SV; third row, spectral displacements SD.
Table 4
χ2f cumulative distribution values.

χ2f=1,196 χ2f=1,197

α 20% 10% 5% 20% 10% 5%
c1−α, f 1236.96 1259.09 1277.57 1237.97 1260.12 1278.6
the four tested distributions are shown to be valid models for the
spectral accelerations (SA), velocities (SV), and displacements (SD)
of a linear SDOF oscillator under the excitation of the Northridge,
and San Andreas SE record ensembles.

6.2. Probabilistic response spectra based on the Log-Normal family of
distributions

The two-parameter Log-Normal model yielded theminimum χ
values over the period spectrum for both earthquake ensembles,
and was selected to formulate the probabilistic curves of the peak
response variables. In a related study, a Log-Normal model for the
response quantities of a linear SDOF oscillator was proposed by
Chopra ([29], Section 6.9). A comparison between the empirical
and the Log-Normal cumulative distribution functions for a 4 s
SDOF oscillator validates the choice of the Log-Normal model
(Fig. 17).
Furthermore, the 80%, 90%, and 95% percentile curves of the

response variables (SA, SV, SD) based on the families of Log-Normal
distributions were plotted for each record ensemble (Figs. 18
and 19). The three probabilistic response curves follow similar
shape trends with the ensemble mean curves—E[SA], E[SV], E[SD].
It should be noted that confidence intervals of the parameter
estimators have not been calculated. For instance, the (1−α)-level
confidence interval of the Log-Normal sample meanµ estimator is
given by(
µ+ tn−1,α/2

σ
√
n
, µ− tn−1,α/2

σ
√
n

)
, (12)
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(a) SA Probabilistic spectra: Northridge X-direction. (b) SV Probabilistic spectra: Northridge X-direction.

(c) SD Probabilistic spectra: Northridge X-direction.

Fig. 18. Response curves of peak accelerations SA, peak velocities SV, and peak displacements SD over period values for the Northridge X-direction dataset. The curves
correspond to mean peak values (E[SA], E[SV], E[SD]) and percentiles: 80%, 90%, 95% of non-exceedance (damping ζ = 0.01).
where tn−1,q denotes the q-quantile of the t−distribution with
(n−1) degrees of freedom, and σ is the sample standard deviation.
For example, for a 90% confidence interval for the sample mean
µ, the 5% Student-t distribution quantile for n = 10,000 dof is
t(9999, 0.05) = −1.645; thus, the 90% confidence interval of
µ is(
µ− 1.645

σ
√
9999

, µ+ 1.645
σ
√
9999

)
. (13)

Similarly, the (1−α)-level confidence intervals for the Log-Normal
sample standard deviation σ estimator is obtained from(
σ

√
n− 1

χ2n−1,1−α/2
, σ

√
n− 1
χ2n−1,α/2

)
(14)

where χ2n−1,q is the q-quantile of the χ
2 distribution with (n − 1)

degrees of freedom. For example, for a 90% confidence interval for
the sample standard deviation σ , the 5% and 95% χ2 distribution
quantiles for n = 10,000 dof are χ2(9999, 0.05) = 9767.54,
and χ2(9999, 0.95) = 10, 232.7, respectively; thus, the 90%
confidence interval of σ is(
σ

√
9999

10, 232.7
, σ

√
9999
9767.54

)
. (15)

Consequently, for a complete probabilistic approach to the
construction of linear response spectra, the lower and upper
bounds of a predetermined confidence interval (i.e., 90%, 95%, etc.)
should be included in the probabilistic plots (Figs. 18 and 19).
A potential application of the regional probabilistic spectra in

the area of seismic design is the derivation of amplification factors
for the peak response variables. Amplification factors derived from
regional probabilistic spectra can contribute to the evaluation of
seismic design spectra associatedwith a certain level of confidence,
whenmultiplied by the peak response values derived, for example,
from a single available earthquake record. A crude estimate for the
peak response amplification factors is presented in Table 5. These
amplification factorswere based on the SanAndreas SEX-direction
(ζ = 0.01) probabilistic spectra plots. They were computed by
adding the peak response values (SA, SV, and SD) corresponding to
a given percentile curve (80%, 90%, and 95%) over the set of period
values T = 2, 3, 4, 5, 6, 7, and 8, s, and dividing by the sum of
the mean peak values (E[SA], E[SV], and E[SD]) for the same set
of period values. For example, the amplification factor of the peak
acceleration SA for the 80% percentile curve (F 80%SA ) is

F 80%SA =
SA80%T=2 + SA

80%
T=3 + · · · + SA

80%
T=8

E[SA]T=2 + E[SA]T=3 + · · · + E[SA]T=8
. (16)

Additional processing of the remaining earthquake scenarios
would not contribute any further to the clarification of the
underlying probability models for the response variables due to
the simulated acceleration records’ limited frequency spectrum,
which yielded similar response spectra shapes for all the scenario
datasets in this study. The response amplification factors are
based on records from sites overlying diverse geological strata
with sedimentary layers, rocks, etc. The spatial dependency of
the amplification factors should be addressed in future studies by
classifying the ground motion records in groups from sites that
have similar geological properties.

6.3. Probabilistic association of rms response measures

To inquire about a probabilistic association between the
maximum rms response quantities derived from the analytical
solution of the nonstationary response and the peak response
quantities derived from the statistical inference analysis, curves of
multiple rms values (k∗ rms, k = 1, 2, 3, 4, 5) were superimposed
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(a) SA Probabilistic spectra: San Andreas SE X-direction. (b) SV Probabilistic spectra: San Andreas SE X-direction.

(c) SD Probabilistic spectra: San Andreas SE X-direction.

Fig. 19. Response curves of peak accelerations SA, peak velocities SV, and peak displacements SD over period values for the San Andreas SE X-direction dataset. The curves
correspond to mean peak values (E[SA], E[SV], E[SD]) and percentiles: 80%, 90%, 95% of non-exceedance. The dashed lines in Fig.(b) and Fig.(c) are the mean plus rms values
for the peak velocities SV, and peak displacements SD respectively (damping ζ = 0.01).
Table 5
Amplification factors for response spectral parameters based on the San Andreas SE
X-direction probabilistic spectra (damping factor ζ = 0.01).

Percentile curve
80% 90% 95%

Spectral variables

SA (acceleration) 1.56 2.49 3.67
SV (relative velocity) 1.57 2.47 3.60
SD (relative displacement) 1.55 2.37 3.37

on the peak response percentile plots that are based on the Log-
Normal distribution (Fig. 20). The rms values in Fig. 20 are the
maximum values of the transient mean-square responses, and are
determined from Eqs. (7) and (8) (see Fig. 13 for a sample transient
mean-square response).
These graphs were plotted only for the peak velocities SV and

peak displacements SD of the San Andreas SE X-direction dataset,
and for one level of damping ζ = 0.01). The graphs indicate the
expected level of probability confidence, when the rms value (or a
multiple value of rms) is used for a performance-based design of
earthquake-resistant structures. For example, based on Fig. 19(b),
by selecting the value of E[SV] + rms as the design threshold for
peak relative velocities, there is an 80% probability that this value
will not be exceeded. Similarly, based on Fig. 20(a), by selecting
the value of 5∗ rms (i.e., five times the maximum rms response) as
the design threshold for peak relative velocities SV, there is a 95%
probability that this value will not be exceeded.
7. Conclusions

To construct regional earthquake response spectra from
thousands of synthesized acceleration records derived from
several scenario earthquakes plausible for the Los Angeles basin,
a procedure with two stages of analysis is proposed.
The first stage of analysis includes the construction of the

excitation temporal covariance matrices, their Karhunen–Loève
(K–L) decomposition, and subsequent conversion of the dominant
K–L eigenvectors to eigenfunctions with Chebyshev polynomials.
Based on the exact closed-form solution for the nonstationary
response of linear MDOF systems, response spectra for different
damping values are constructed for themaximumvalues of the rms
response quantities.
For the second stage of analysis, the response of an SDOF

system subjected to acceleration excitation is calculated by
solving analytically the differential equation of motion in a
computationally efficient fashion for processing large size datasets.
Response spectra for different damping values are constructed
for the mean values of the ensemble response peaks. In addition,
statistical inference analysis for the response variables leads to the
construction of response spectra associated with percentile values
of non-exceedance based on the Log-Normal probability model for
the response variables.
Analysis results from both stages are combined by superimpos-

ing the percentile curves of the response quantities and the curves
of multiple rms values. These graphs associate the rms values with
confidence intervals attached to a certain probability value of not
being exceeded.
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(a) SV Probabilistic spectra with rms curves. (b) SD Probabilistic spectra with rms curves.

Fig. 20. Superposition of percentile curves (solid lines) and maximum rms (dashed lines) for the spectral velocities SV (a) and spectral displacements SD (b) of the San
Andreas SE X-direction scenario (damping is ζ = 0.01). The solid lines correspond to ensemble spectral means (E[SV] and E[SD]), and 80%, 90%, and 95% values of non-
exceedance. The dashed lines correspond to the maximum k ∗ rms values for k = 1, 2, 3, 4, 5.
A significant and useful contribution of this study is the es-
tablishment of a quantitative relationship between the analyti-
cally determinedmaximum values of the nonstationary system re-
sponse, and the probabilistic response spectra directly constructed
from the ensemble statistics of the available earthquake records,
so as to estimate the confidence levels of non-exceedance of spe-
cific spectral response levels. Such information can be useful in
conducting performance-based designs matching certain reliabil-
ity constraints.
The main limitations for the application of the proposed

methodology for the construction of regional earthquake spectra
are primarily due to the relatively small number of scenario
earthquakes considered in this study and the maximum frequency
(0.5 Hz) used for the ground motion simulation, and secondarily,
to uncertainties concerning the accuracy of the basin model, and
the omission of surface layers with shear velocities less than 1.0
km/s. Ground motion simulations with minimum shear velocities
300 m/s and maximum frequency 1.5 Hz are implemented in
Benites and Olsen [21]. Future simulations that would incorporate
signals with a wider frequency content, and more realistic values
for the surface S-wave velocity, would give rise to higher ground
velocities and accelerations, and as a result, to higher response
spectra amplitudes.
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