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S U M M A R Y
Simulations of earthquake rupture on the southern San Andreas Fault (SAF) reveal large am-
plifications in the San Gabriel and Los Angeles Basins (SGB and LAB) apparently associated
with long-range path effects. Geometrically similar excitation patterns can be recognized re-
peatedly in different SAF simulations (e.g. Love wave-like energy with predominant period
around 4 s, channelled southwestwardly from the SGB into LAB), yet the amplitudes with
which these distinctive wavefield patterns are excited change, depending upon source details
(slip distribution, direction and velocity of rupture). We describe a method for rapid calcu-
lation of the sensitivity of such predicted wavefield features to perturbations of the source
kinematics, using a time-reversed (adjoint) wavefield simulation. The calculations are analo-
gous to those done in adjoint tomography, and the same time-reversed calculation also yields
path-sensitivity kernels that give further insight into the excitation mechanism. For rupture on
the southernmost 300 km of SAF, LAB excitation is greatest for slip concentrated between
the northern Coachella Valley and the transverse ranges, propagating to the NE and with
rupture velocities between 3250 and 3500 m s–1 along that fault segment; that is, within or
slightly above the velocity range (between Rayleigh and S velocities) that is energetically
precluded in the limit of a sharp rupture front, highlighting the potential value of imposing
physical constraints (such as from spontaneous rupture models) on source parametrizations.
LAB excitation is weak for rupture to the SW and for ruptures in either direction located north
of the transverse transverse ranges, whereas Ventura Basin (VTB) is preferentially excited by
NE ruptures situated north of the transverse ranges. Path kernels show that LAB excitation
is mediated by surface waves deflected by the velocity contrast along the southern margin of
the transverse ranges, having most of their energy in basement rock until they impinge on the
eastern edge of SGB, through which they are then funnelled into LAB. VTB amplification is
enhanced by a similar waveguide effect.

Key words: Numerical solutions; Earthquake ground motions; Guided waves; Computational
seismology; Wave propagation.

1 I N T RO D U C T I O N

Numerical simulations of earthquake ground motion have begun to
play a significant role in the practical assessment and analysis of
earthquake hazard and risk. Ground motion simulations have poten-
tial roles in earthquake preparedness planning, engineering studies
and probabilistic seismic hazard analysis (PSHA). For example,
a recent emergency response and preparedness exercise, the 2008
ShakeOut project (Jones et al. 2008), examined the implications
of a major (M7.8) San Andreas Fault (SAF) earthquake in south-
ern California on the basis of simulated ground motion estimates
(Graves et al. 2008). This and similar scenario simulations have
also provided a basis for engineering estimates of physical damage

to structures (e.g. Krishnan et al. 2006a,b; Muto & Krishnan 2011),
and large ensembles of such simulations are being explored as a
supplement to empirical ground motion estimation, with potential
applications in PSHA (Graves et al. 2010). Numerical simulations
are, of course, likely to be of greatest utility for the analysis of
scenarios that are poorly represented by existing strong motion
records. This criterion suggests a focus on very large, rare events,
which therefore implies calculations undertaken at very large spa-
tial scales. Likewise, simulations have particular relevance when
regional geology is strongly heterogeneous, and especially when
deep and/or laterally extensive sedimentary basins are present (e.g.
Frankel & Vidale 1992; Olsen et al. 1995; Graves et al. 1998; Pitarka
et al. 1998; Olsen 2000; Komatitsch et al. 2004; Day et al. 2008a).
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Moreover, recent studies have in some cases predicted unex-
pectedly large, localized amplifications when both of the forego-
ing factors are present, that is, when very large ruptures interact
over large spatial scales with extensive, low-velocity sedimentary
structures. For example, calculations by Olsen et al. (2006) for a
M7.7 rupture scenario on the southern SAF suggest that surface
wave energy can be redirected into the urban Los Angeles Basin
by sedimentary structures present along the southern margin of the
transverse ranges (e.g. Magistrale et al. 2000; Suss & Shaw 2003),
exhibiting some wavefield features reminiscent of a heterogeneous
waveguide. However, the same study, in combination with subse-
quent ones (Graves et al. 2008; Olsen et al. 2008, 2009; Ely et al.
2010), shows that predicted ground motion levels in these highly
amplified zones can be very sensitive to some of the specific charac-
teristics of the hypothesized SAF earthquake, as we discuss further
in the next section.

These results underscore the need for parameter studies that ex-
plore the sensitivity of ground motion phenomenology to source and
path variations. We will follow convention (e.g. Weldon et al. 2005;
Graves et al. 2008; Jones et al. 2008) in using the term ‘scenario’ to
refer to a hypothesized earthquake whose specification includes the
fault, the endpoints of the rupture and the amount and timing of slip
as a function of position (or an implied specification of the latter
in terms of stresses and frictional parameters in a fully dynamic
rupture model, as in, e.g. Olsen et al. 2008, 2009; Ely et al. 2010).
Practical engineering application of simulated ground motion usu-
ally requires some characterization of the scenario as a member
of a hypothetical ensemble of plausible events (e.g. all scenarios
with a given magnitude and rupture endpoints on a given fault).
For example, in some applications it may be appropriate to use mo-
tion that is representative of a near-worst case scenario (for a given
site, fault segment and magnitude), whereas in other applications
we may require a scenario that is representative of median-level
ground motion for the ensemble. The appropriate ranking of a sce-
nario within such a spectrum of plausible cases may be far from
obvious when the source is large and complex and the wave paths
traverse complex 3-D Earth structure.

For the class of problems emphasized in the foregoing discussion,
the large geographical scale relative to wavelengths of interest, and
therefore large computational scale (and cost) required for ground
motion simulations, may inhibit parameter studies that are extensive
enough to adequately explore parameter sensitivities. And, at best,
only limited guidance for navigating through parameter space will
be available from conventional wave propagation theory, because it
is in just such problems that our customary conceptual tools such
as normal mode and ray decompositions lose much of their utility.
There is a need to augment those conceptual tools with additional
approaches for extracting more general insights from ground motion
simulations.

This paper highlights one approach that we have found useful.
It is based upon identifying and isolating a wavefield feature of
interest within a simulation—here we have in mind wavefield com-
ponents, such as sedimentary basin excitations, that possesses some
recognizably coherent space–time structure—and then calculating
both the source- and path-parameter sensitivities (to first order in
their respective perturbations) of some scalar measure of the fea-
ture. The latter step is executed via time-reversal imaging, that is, an
adjoint operation that takes as its source a portion of the simulated
wavefield. Section 2 provides additional motivation by reviewing
some issues raised by recent simulations for southern California.
The theory, with results formally paralleling those underlying ad-
joint tomography, is outlined in Sections 3–5 and three appendices.

Section 6 presents applications of this scheme to a simulation of a
large SAF earthquake, including a comparison of the adjoint results
with partial forward simulations. Section 7 summarizes results and
notes possible extensions and limitations of the adjoint analysis.

2 B A C KG RO U N D

The SAF in southern California has not ruptured in a major earth-
quake since the 1857 Fort Tejon earthquake, and its southernmost
(Coachella) section has not experienced a large event in roughly
300 years (Sieh & Williams 1990). Thus, there are no instrumental
records to provide ground motion estimates for a future southern
SAF earthquake. Meanwhile, the Working Group on California
Earthquake Probabilities (2008) estimates a relatively high 30-yr
probability of 37 per cent for such an event (of M7.5 or greater).
In the absence of recorded ground motion for large SAF events,
numerical ground motion simulations (e.g. Olsen et al. 1995, 2006,
2008, 2009; Graves et al. 1998, 2008; Krishnan et al. 2006a,b; Cui
et al. 2010; Ely et al. 2010) have provided some important insights,
while also raising new questions.

The most startling predictions originate from simulations of large
(M7.7 and larger) NW-directed ruptures on the southernmost 200
km of the SAF, for which the calculations of Olsen et al. (2006, 2008)
show anomalously high long-period (4–5 s) ground motion in parts
of the San Gabriel and Los Angeles Basins (SGB and LAB; Fig. 1).
Subsequent simulations for similar SAF scenarios have confirmed
those predictions (Graves et al. 2008; Olsen et al. 2009; Ely et al.
2010). Several observations are relevant here. (i) Predicted peak
ground velocity (PGV) levels for this high-amplitude zone, more
than 50 km from the SAF, are in some cases comparable to those
immediately adjacent to the fault and can exceed median empirical
predictions by 2, and locally up to 3, standard deviations of the
natural logarithm (those figures are for the scenario of Olsen et al.
2008; other source models lead to even more extreme predictions,
e.g. Olsen et al. 2006; Graves et al. 2008). (ii) Moreover, those
levels of exceedance are calculated after the empirical predictions
(Campbell & Bozorgnia 2008) have already been corrected upward
for the mean basin amplification effect derived from a large suite of
simulations for other fault-rupture scenarios in southern California
(Day et al. 2008a). Thus, the high levels are not easily understood
as a purely local amplification effect, but rather appear to require
an explanation that considers the entire seismic wave path specific
to the southern SAF events. (iii) The high amplitudes are not a
result of anomalously high source excitation, because simulated
PGV values on rock sites closely track median empirical predictions
(see Olsen et al. 2008, fig. 15; also Olsen et al. 2009). (iv) The
high amplitudes are clearly related to rupture–propagation-induced
directivity, because the effect is far larger for NW-directed than
for SE-directed SAF rupture. However the relationship is not the
conventional one, because, as Fig. 1 makes clear, the region of high
amplitudes is well to the west of the expected forward directivity
cone for SAF ruptures.

The explanation proposed by Olsen et al. (2006) is that the high
amplitude zone results from a waveguide-like effect, in which the
NW-directed forward directivity pulse from a SAF rupture is di-
verted westward by the sequence of contiguous sedimentary basins
lying along the southern edge of the transverse ranges (fig. 2 of
Olsen et al. 2006). In this conceptual picture, the high amplitudes
result from the addition of these channelled waves to basin waves
derived locally through other wave interactions at the SGB/LAB
edges. This picture emerges quite suggestively in time-sequential
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Figure 1. Snapshots of ground-velocity amplitude for simulation of rupture of the southernmost 200 km of the SAF (from Olsen et al. 2008). White lines
show fault traces and county lines. The dotted line shows the part of the SAF that ruptured (from SE to NW) in the simulation. The very high amplitudes in
the SGB and LAB become greatly reduced when rupture directivity is reversed. Although SGB/LAB amplitudes are controlled by rupture directivity, they lie
outside the directivity cone predicted for a laterally uniform Earth structure.

wavefield visualizations, as in Fig. 1. However, it remains a quali-
tative interpretation (which we revisit in Section 6), and it initially
proved difficult to project how the anomalous basin-excitation lev-
els would respond to source variations, except through the brute
force expedient of repeatedly recalculating full-scale simulations.
For example, Olsen et al. (2008) used a dynamic rupture model to
calculate ground motion from a M7.7 SAF event, and compared
calculated amplitude levels in the high-amplitude zone with calcu-
lated levels for a kinematic source with slip distribution identical to
that of the dynamic model, but constrained to have constant rupture

velocity; they found the latter to predict PGV almost a factor of two
higher than the former. Olsen et al. (2009), comparing their predic-
tions for the M7.8 ShakeOut scenario (Jones et al. 2008) with those
of Graves et al. (2008), found a similar discrepancy, the Olsen et al.
dynamic rupture sources yielding 3 s spectral accelerations roughly
a factor of two lower in the high-amplitude zone than the Graves
et al. kinematic sources. This was the case even though statically
(i.e. in terms of their smoothed, along-strike moment distributions),
the sources would have been barely distinguishable. Graves et al.
note that the SGB/LAB region amplitudes are very sensitive to
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rupture velocity, again suggesting that the high amplitudes are di-
rectivity related, despite their location far from the SAF and well
outside the conventional directivity cone.

In short, the mechanisms for these complex variations in excita-
tion of the SGB/LAB region are not transparent and conventional
approximate methods give us minimal help in estimating paramet-
ric uncertainties. Very large simulation suites could overcome this
difficulty, but this approach remains an impractical one in prob-
lems of very large computational scale. Our purpose is to present
a methodology that can efficiently provide first-order estimates of
source- and path-parameter sensitivities of significant ground mo-
tion amplification features, as well as qualitative insights into the
source–path interactions that control those sensitivities. Those es-
timates and insights may then become a guide to more selective
parametric studies.

3 G E N E R A L F R A M E W O R K

We treat ground motions in the context of linear dynamic viscoelas-
ticity, with sources given by kinematically prescribed velocity dis-
continuities on a fault surface. We refer to the simulation under
study as the reference simulation, and quantify the degree of ex-
citation of a feature of interest within the reference wavefield by
defining a functional E on the velocity field (with space–time sup-
port localized to the feature of interest). Then a second (adjoint)
simulation, with a source derived from the time reversal of the
reference simulation, permits us to calculate perturbations to that
functional arising from perturbations to the source.

There is a close analogy with adjoint tomography (e.g. Taran-
tola 1988; Akcelik 2003; Tromp et al. 2005) in our approach. The
equivalent-force system of the propagating velocity discontinuity
is analogous to the tomographic source; the functional E is anal-
ogous to the data misfit function of adjoint tomography, with its
Fréchet derivative providing the source term for the adjoint field.
As this analogy suggests, the same time-reversed simulation that
gives the source sensitivities of E also yields the sensitivity of E
to elastic moduli perturbations, providing an image of the principal
propagation pathways and modes by which the feature is excited.

3.1 Function spaces

We let � denote a bounded, open domain in R
3, ∂� its boundary

(assumed smooth, with outward normal n̂) and � a surface (smooth,
with positive-side normal υ̂) contained in �̄ and across which jump
discontinuities are permitted. We will make reference to the follow-
ing space–time regions and boundary sets (in which tildas are used
to indicate exclusion of the discontinuity surface � and overbars
indicate closure of a set)

�̃ ≡ �̄ − �, (1a)

∂�̃ ≡ ∂� − ∂� ∩ �, (1b)

R ≡ �̃ × [0, T ] , (1c)

�1 ≡ ∂�̃ × [0, T ] , (1d)

�2 ≡ � × [0, T ] , (1e)

�3 ≡ �̃, (1f)

(the last of which, although redundant, allows us to use a consistent
indexing in referring to the various space–time sets that bound R
and the corresponding function spaces).

In order for functionals on the velocity field to make sense, we
have to restrict consideration to velocity fields that have a certain
degree of regularity. We assume that the space of admissible sources
(slip functions) has been restricted a priori such that all admissible
sources generate velocity fields in some space V of vector-valued
functions on R (noting that R excludes interior surface �2). We take
V such that w ∈ V and its first- and second-order partial derivatives
are continuous and square-integrable on R. On �2, w(x, t) and its
normal derivative must have finite positive- and negative-side limits,
but opposing-side limits may differ, permitting discontinuity across
that boundary. Restrictions of w and its first-order partial derivatives
to �1, �3 × {0} and �3 × {T } are well defined by continuity. V ∗

denotes the space of linear functionals on V and functionals in V ∗

will be distinguished by asterisk superscripts.
Elements of V are also in the space H of square-integrable vector-

valued functions on R, as are their first and second time derivatives.
We give H the inner product

(f, g)H ≡
∫
�̃

dV

T∫
0

f · gdt, f, g ∈ H, (2)

where the integrand is the ordinary vector dot product, given in
Cartesian coordinates by

∑3
i=1 fi gi (we also assume that V has a

norm and that the norm in H is bounded by that in V, so the identity
mapping from V to H is bounded, a result required in Appendix B).
We also use an abbreviated notation for the space–time integral of
the scalar product of second-order tensor-valued functions p and q
(with square-integrable components),

[ p, q]H⊗H ≡
∫
�̃

dV

T∫
0

p : qdt, (3)

(where the integrand is the ordinary tensor scalar product, given
in Cartesian coordinates by

∑3
i=1

∑3
j=1 pi j q i j ). We denote by B1,

B2 and B3 the square-integrable functions on �1, �2 and �3, re-
spectively, with the following inner products over these boundary
domains,

(f, g)B1
≡

∫
∂�̃

dA

T∫
0

f · gdt, f, g ∈ B1, (4a)

(f, g)B2
≡

∫
�

dA

T∫
0

f · gdt, f, g ∈ B2, (4b)

(f, g)B3
≡

∫
�̃

dV f · g, f, g ∈ B3. (4c)

A convolution operator ∗ between vectors will imply temporal
convolution combined with contraction, with the component prod-
ucts in the contraction operation interpreted as convolutions of the
respective components, for example f ∗ g is defined by

f ∗ g (x, t) ≡
t∫

0

f (x , τ ) · g (x , t − τ ) dτ . (5a)
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When there is a double contraction as well as convolution, we
will show that explicitly, for example p : ∗q means

p : ∗q (x, t) ≡
t∫

0

p (x , τ ) : q (x , t − τ ) dτ . (5b)

The notations �̃T and �T will be used to indicate volume and
surface integrals for which the integrand has been evaluated at
t = T, for example∫

�̃T

dV f ∗ g ≡
∫
�̃

dV (f ∗ g)|t=T = (f,�g)H , f, g ∈ H, (6a)

∫
�T

dA f ∗ g ≡
∫
�

dA (f ∗ g)|t=T = (f,�g)B2
, f, g ∈ B2, (6b)

(and similarly for integration on �1, or for integration of dou-
bly contracted products such as eq. 5b), where � symbolizes time
reversal,

�f (x , t) = f (x , T − t) . (7)

3.2 Anelasticity

In linear viscoelasticity, the stress tensor T is a hereditary integral
over strain-rate history ė, of the form

T (x , t) =
t∫

−∞

c (x , t − τ ) : ė (x , τ ) dτ, (8)

where the time-dependent fourth-order tensor c consists of a time-
independent unrelaxed modulus, cu(x), minus a time-dependent
relaxation function cu(x) − c (x, t) that has initial value zero. We
assume that c has the symmetries ci j pq = c j i pq = cpqi j , implying
also ci j pq = ci jqp. Using definition (5b), (8) can be written, for
t ≥ 0, as

T (x , t) =
0∫

−∞

c (x , t − τ ) : ė (x , τ ) dτ + c (x, t) : ∗ė (x , t) . (9)

The first term is a stress history representing relaxation of stresses
associated with the strain history on time interval (−∞, 0). We
denote that initial strain history by e< and redefine e and T to be
restrictions of the strain and stress histories, respectively, to the time
interval [0, T ]. We can then write the stress as

T (x , t) = T> (x , t) + c (x , t) : ∗ė (x , t) , t ∈ [0, T ] , (10)

where

T> (x , t) =
0∫

−∞

c (x , t − τ ) : ė< (x , τ ) dτ, t ∈ [0, T ] , (11)

(note that T> is a function of non-negative time, representing the
relaxation of stresses induced by strain e< already accrued during
negative time). The assumed symmetries of c permit us to replace the
strain rate with the gradient of velocity v, and it is also convenient
to work with stress rate, expressing it in terms of a distributional
time derivative of c, so we write the time derivative of (10) as

Ṫ = Ṫ
> + Ċ : ∗∇v, (12)

where now all quantities are defined on the time interval [0, T ] and
we have introduced the notation

Ċ (x , t) ≡ cu (x) δ (t) + ċ (x , t) (13)

(and the lower limit of the convolution integral is understood to be
0−). Tensor C is the same as c except that the former is understood
to account for the initial value contribution in a way that permits
time differentiation to be shifted from the strain rate to the modulus
tensor, which is simply a notational device to render the equations
of motion in a form similar to that of the elastodynamic case (and
later to make an operator symmetry more transparent).

In general, to fully specify the initial state determining motion on
time interval [0, T ], it is necessary to give the function e<, or T>.

However, we restrict consideration to so-called anelastic models (in
the sense of, e.g. Nowick & Berry 1972), by requiring that, after a
sufficiently long time t R, c differ negligibly from some equilibrium
value, the relaxed modulus cR(x), so that an equilibrium stress state
exists for any strain state. If the strain rate is negligible during time
interval (−t R, 0), then equilibrium will have been reached at t = 0,

with T> simply reducing to a time-independent initial stress field,
that is

T> (x , t) =
0∫

−∞

c (x , t − τ ) : ė< (x , τ ) dτ ≈ cR (x) :

×
0∫

−∞

ė< (x , τ ) dτ = T (x , 0) , (14)

and in that case Ṫ
> = 0 and (12) reduces to Ṫ = Ċ : ∗∇v. We

will assume that the reference simulation is initiated in such a fully
relaxed state, with Ṫ

> = 0.

We, in addition, require components of c to be twice continuously
differentiable in time and continuously differentiable in the space
coordinates, apart from a possible jump discontinuity on �2, where
positive- and negative-side limits are denoted by superscripts, for
example Ċ

±
. We further restrict the relaxation function to be such

that positive work is done in any deformation path starting from
an unstrained state, and require components of cu to be non-zero.
These conditions are sufficient (Gurtin & Sternberg 1963) to meet
the requirement in Appendix A that (12) be invertible to give the
strain rate in terms of stress rate,

ė = ė> + J̇ : ∗Ṫ (15)

(ė> is the creep rate on [0, T ] due to stress accrued during (−∞, 0)
and J̇ has the same relation to the creep function that Ċ has to c in
eq. 13).

3.3 Boundary functions

To keep track of the functions created by various boundary-set re-
strictions of functions w ∈ V, we symbolize those restrictions by
trace operators γ j : V → Bj , with added superscripts distinguish-
ing different operators associated with a common boundary. These
are

γ1w = w|�1
∈ B1, the restriction of w to �1; (16)

γ2w = (
γ +

2 w, γ −
2 w

) ∈ B2 × B2, (17a)

where γ +
2 w and γ −

2 w are the positive- and negative-sides limits at
�2, respectively, from which we also define

γ 

2 w = γ +

2 w − γ −
2 w, discontinuity on �2, (17b)
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γ α
2 w = αγ +

2 w + (1 − α) γ −
2 w , weighted mean on �2, (17c)

with α(x) denoting any bounded, real scalar-valued function defined
on �; and

γ3w = (
γ I

3 w, γ F
3 w

) ∈ B3 × B3, (18a)

where

γ I
3 w = w|�3×{0} ∈ B3, restriction of w to �3 × {0} ,

that is, its initial-value function; and (18b)

γ F
3 w = w|�3×{T } ∈ B3, restriction of w to �3 × {T } ,

that is, its final-value function. (18c)

We introduce three more operators β j : V → Bj that return
functions in B1, B2 or B3. The first two map velocities to boundary
traction rates, excluding any contribution from T>,

β1w = n̂ · Ċ : ∗ (∇w)|�1
∈ B1, traction rate on �1

(excluding n̂ · Ṫ
>

);
(19)

and

β2w = (
β+

2 w, β−
2 w

) ∈ B2 × B2, (20a)

where

β±
2 w = υ̂ ·

[
Ċ

±
: ∗ (∇w)|�±

2

]
, (20b,c)

from which we also define

β

2 w = β+

2 w − β−
2 w , traction-rate jump on �2 (excluding υ̂.Ṫ

>
),

(20d)

βα
2 w = αβ+

2 w + (1 − α) β−
2 w,

weighted mean traction rate on �2 (excluding υ̂.Ṫ
>

). (20e)

The third gives endpoint time derivatives weighted by density,

β3w = (
β I

3 w, βF
3 w

) ∈ B3 × B3, (21a)

where

β I
3 w = ρ∂t w|�3×{0} , density times initial acceleration, (21b)

βF
3 w = ρ∂t w|�3×{T } , density times final acceleration. (21c)

(and density ρ is a continuous, positive function of the spatial co-
ordinates). The definitions of the weighted-mean operators γ α

2 and
βα

2 are motivated by their utility for restating expressions such as
γ +

2 u · β+
2 w − γ −

2 u · β−
2 w in terms of the discontinuities γ 


2 u and
β


2 w,

γ +
2 u · β+

2 w − γ −
2 u · β−

2 w = γ α
2 u · β


2 w + γ 

2 u · β1−α

2 w. (22)

4 I N I T I A L VA LU E P RO B L E M
O P E R AT O R A N D I T S T R A N S P O S E

The relationship between the direct and adjoint problems in dynamic
viscoelasticity is well known, but we revisit the question to put it in
the present context of evaluating Fréchet derivatives of functionals
of the velocity field. Although the final results can be obtained with-
out difficulty using more familiar formalism, there are conceptual
advantages in following an approach initiated for elastodynamics
by Gurtin (1964), and subsequently simplified by Herrera & Bielak

(1974), wherein we express the viscoelastic initial boundary value
problem in abstract form as a functional-valued operator equation.
In Appendix A, we extend Herrera and Bielak’s approach to ac-
commodate viscoelastic response (using Leitman 1966; Herrera &
Bielak 1977) and the fault-plane discontinuity. We show, by con-
struction, how the operator achieves symmetry with its transpose
while capturing the initial and boundary conditions.

Conceptual advantages, include the following: (i) the operator is
expressed in terms of a single bilinear functional that accounts for
all discontinuity jumps, boundary conditions and initial conditions,
without requiring any of these to be carried as a priori constraints on
the operator domain, thus making the self-transpose character of the
initial-value problem transparent. (ii) We do not explicitly introduce
a generalized function for moment density (which requires a smooth
viscoelastic modulus function at sites where the moment density is
singular, as noted by Backus & Mulcahy 1976), so the formulation
remains valid even when part of the fault coincides with a surface
of discontinuity of the elastic modulus. The source functional arises
naturally from the kinematic boundary condition (and the nature
of the ambiguity in the moment–tensor formalism noted by others,
e.g. Heaton & Heaton 1989, Ampuero & Dahlen 2005, becomes
immediately apparent). (iii) The other sources of interest to us fit
this conceptual framework quite naturally as well; for example,
we will quantify wavefield features by means of functionals and
these, through their Fréchet derivatives, serve, in this formalism, as
sources for the adjoint field.

4.1 Initial, boundary and discontinuity conditions

We will consider reference simulations for which the velocity field
v ∈ V (i) satisfies the homogeneous integro-differential equations of
linear dynamic viscoelasticity on space–time region R; (ii) has jump
discontinuity and continuous traction, on �2; (iii) has zero traction
on external boundary �1 and (iv) is initially in static equilibrium
(i.e. has zero velocity and acceleration on �3 × {t = 0}, implying
that stresses due to pre-existing strains have fully relaxed, so T> is
just a constant T 0 = cR : e<|t=0, with −∇ · T 0 equal to the product
of density and the gravitational acceleration).

We begin with a somewhat more general viscoelastic problem,
and write the equations of motion in time-differentiated form (for
convenience, because various static quantities like gravitational ac-
celeration and fiducial stresses and displacements can then be ig-
nored). We refer to functions (vinit, ainit, e<) as initial-state condi-
tions. Here vinit and ainit are specified initial velocity and acceler-
ation, respectively, on �3 × {0}, and (as before) e< is strain his-
tory on �3 × (−∞, 0). The latter is associated, through (11), with
stress T> (on R); T>

n will denote n̂ · T>(on �1) and 
T>
υ will de-

note υ̂ · (T>+ − T>−) (on �2). The functions (vinit, ainit, T>) are an
equivalent specification of the initial-state conditions.

We permit a body force-rate density −∇ · p+b in R (with b(x, t)
vector valued and p(x, t) second-order tensor valued), from which
are derived (possibly) non-zero surface traction rate pn ≡ n̂ · p on
�1 and traction-rate discontinuity 
pυ ≡ −υ̂ · ( p+ − p−) on �2.

As noted, we also permit a velocity discontinuity ṡ to be specified
on �2. Then our problem statement is that v ∈ V satisfy

Lv = −∇ · p + b + ∇ · Ṫ
>
, ∇ · p, b, ∇ · Ṫ

> ∈ H ∩ Rg (L) ,
(23a)

β1v = pn − Ṫ>
n , pn, Ṫ>

n ∈ B1 ∩ Rg (β1) , (23b)

γ 

2 v = ṡ, ṡ ∈ B2 ∩ Rg

(
γ 


2

)
, (23c)
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β

2 v = 
pυ − 
Ṫ

>

υ , 
pυ, 
Ṫ
>

υ ∈ B2 ∩ Rg
(
β


2

)
, (23d)

γ I
3 v = vinit, vinit ∈ B3 ∩ Rg

(
γ I

3

)
, (23e)

β I
3 v = ρainit, ainit ∈ B3 ∩ Rg

(
β I

3

)
, (23f)

where L : V → H is

Lv = ρv̈ − ∇ · (
Ċ : ∗∇v

)
(24)

[in addition, it will be implicit that we further restrict the right-
hand side functions in (23) such that a solution with the required
regularity actually exists].

4.2 Operator form of initial value problem

We next construct from (23) a linear functional (dependent upon
v ∈ V ) with the following properties: (i) the functional is zero (i.e.
evaluates to zero for all w ∈ V ) if v ∈ V satisfies (23); (ii) if,
for some v ∈ V the functional is zero, then v satisfies (23) and
(iii) the functional has the form a(v, ·) − f ∗, where f ∗ ∈ V ∗ is a
linear functional and a : V × V → R is a bilinear functional that is
symmetric in its arguments, that is a(w, v) = a (v, w) . Functional
f ∗ is independent of v and represents a generalized set of sources
accounting for the initial-state conditions, as well as imposed body-
force densities and boundary conditions (all expressed as rates). We
indicate this dependency by writing f ∗ = F [vinit, ainit, T>; p, b, ṡ],
F being a mapping from generalized sources to functionals in V ∗.

The construction, modelled on Herrera & Bielak (1974), is given
in Appendix A (using the notation in eqs 2, 3, 4 and 7 to represent
integrations) and the result, (A18) and (A19), is (restated in the
notation of eqs 5 and 6)

a (v, w) =
∫

�̃T

dV
(
ρẇ ∗ v̇ + ∇w : ∗Ċ : ∗∇v

)

+
∫

�̃T

dV
(
γ I

3 v · βF
3 w + γ I

3 w · βF
3 v

)
,

+
∫

�T

dA
{
γ 


2
w ∗ βα

2 v + γ 


2
v ∗ βα

2 w
}

(25)

and

f ∗ (w) = F [vinit, ainit, T>; p, b, ṡ] (w) , (26)

where

F [vinit, ainit, T>; p, b, ṡ] (w)

=
∫

�̃T

dV
(
βF

3 w · vinit + γ F
3 w · ρainit − Ṫ

>
: ∗∇w

)

+
∫

�̃T

dV [ p : ∗∇w + b ∗ w] +
∫

�T

dAβα
2 w ∗ ṡ. (27)

Recall that this notation means that the volume and surface in-
tegrals are to be evaluated at time T, and that the operators γ and
β indicate the various space–time boundary restrictions defined in
(16)–(21). The first integral in (27) represents the equivalent forces
of the initial state, the second the applied loads and the third the
equivalent forces of the fault slip.

For fixed v ∈ V in (25), a(v, ·) is a linear functional, a(v, ·) ∈ V ∗,
in terms of which we can define a functional-valued linear operator
A : V → V ∗, by

Av = a (v, ·) , ∀v ∈ V . (28)

Then the single equation

Av = f ∗, f ∗ ∈ Rg (A) ⊂ V ∗, (29)

between linear functionals Av and f ∗ is equivalent to (23), includ-
ing all initial-state and boundary conditions. Note that we have
assumed that restrictions on the problem inputs have insured that
f ∗ ∈ Rg(A), and this assumption is implicit in what follows. With
the restrictions on C stated in Section 3.2, the solution is unique
(e.g. Edelstein & Gurtin 1964) and (29) can be inverted,

v = G f ∗. (30)

with inverse G ≡ A−1, G : V ∗ ⊃ Rg(A) → V .

We can also define transposes At : V → V ∗ and Gt : Rg(A) →
V, by the relationships

At w (v) = Av (w) , v, w ∈ V, (31)

g∗ (G f ∗) = f ∗ (
Gt g∗) , f ∗, g∗ ∈ Rg (A) ⊂ V ∗, (32)

and substitution of Av for f ∗ and At w for g∗ shows that Gt =
(At )−1. The symmetry a(v, w) = a (w, v) implies

At = A, Gt = G, (33a,b)

a result that is used in Section 5. If we express the dependence on
initial-state and source terms as in (26), (33) immediately leads to a
concise statement of familiar reciprocity relationships: let ξi be the
set of initial-state/source terms belonging to solution vi , i = 1, 2;
then (25), (26), (29) and (33a) lead to F [ξ1] (v2) = F [ξ2] (v1) .

An additional consequence of (33), worth noting even though we
do not use it, is that this symmetry implies equivalency of (29),
and therefore (23), to a variational principle: v is a solution to
(23) if and only if functional J ≡ Aw(w) − 2 f ∗ (w) is stationary
at w = v (which is essentially just a restatement of a principal
result of Herrera & Bielak 1974, 1977, extended to include fault
kinematics).

4.3 Source and path perturbations

4.3.1 Source perturbations

We use subscript 0 to indicate functions and operators associated
with the reference simulation (but note that subscript 0 is used
differently in Appendix A). Thus, the reference velocity field v0

is solution to (29), with A = A0 (and G = G0), signifying that
material properties C and ρ take their respective reference values
C0 and ρ0, with source term f ∗

0 constructed from (26) and (27)
with fault slip-rate ṡ equal to ṡ0 and with p, b, vinit, ainit and T>

equal to zero. That is,

A0v0 = f ∗
0 , (34)

where

f ∗
0 (w) = F [0, 0, 0; 0, 0, ṡ0] (w) =

∫
�T

dA βα
20w ∗ ṡ0, (35)

and βα
20 is βα

2 defined by (20e) with reference value of the modulus
tensor,

βα
20w = υ̂ ·

[
α

(
Ċ0 : ∗∇w

)+ + (1 − α)
(
Ċ0 : ∗∇w

)−]
, (36)

the superscripts indicating positive- and negative-side values on the
fault surface (recall that α is an arbitrary function of position on the
fault surface).
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If we perturb slip rate by δṡ and call the corresponding velocity-
field perturbation δvs, (34) and (35) lead to

A0δvs = δ f ∗
s , (37)

where

δ f ∗
s (w) = F [0, 0, 0; 0, 0, δṡ] (w) =

∫
�T

dA βα
20w ∗ δṡ, (38)

and the subscript on δ f ∗
s is a reminder that this source functional

arises from a perturbation to slip velocity.

4.3.2 Path perturbations

By path perturbations, we will refer to perturbations to the elas-
tic moduli or wave speeds. Upon substituting perturbation ex-
pansions C = C0 + εC1 + · · · of the modulus tensor and v =
v0 + εv1 + · · · of the velocity field into (25) for a(v, ·) and into (27)
for F [0, 0, 0; 0, 0; ṡ0], we find that terms first order in ε satisfy
an equation of the form A0v1 = η∗

1, where η∗
1 ∈ V ∗ depends lin-

early on C1. Neglecting higher-order terms, we equate εC1 to total
perturbation δC and εv1 to the total velocity perturbation δvC , and
obtain the result

A0δvC = δ f ∗
C , (39)

with path-perturbation functional δ f ∗
C defined by

δ f ∗
C (w) =

∫
�̃T

dV
(−∇w: ∗ δĊ : ∗∇v0

) −
∫

�T

dA γ 

2 w ∗ δβα

2 v0,
(40)

where

δβα
2 w = υ̂ ·

[
α

(
δĊ : ∗∇w

)+ + (1 − α)
(
δĊ : ∗∇w

)−]
. (41)

The subscript on f ∗
C indicates that the source functional arises from

a perturbation to the modulus tensor.
Eqs (39)–(41) are similar to (37) and (38), with the path-

perturbation functional δ f ∗
C replacing the source-perturbation func-

tional δ f ∗
s and δvC replacing δvs . Generalizing, we could perturb

with respect to some source or path property χ, tensor-, vector-, or
scalar-valued (a scalar-valued example would be the P or S wave
speeds, after specializing to an isotropic medium), and end up, to
first order, with

A0δvχ = δ f ∗
χ , (42)

for some functional δ f ∗
χ , (37) and (39) being special cases of (42).

5 WAV E F I E L D S E N S I T I V I T I E S

Once a wavefield feature of interest (such as one of the prominent
basin excitations discussed earlier) has been described in quantita-
tive terms as a functional of the velocity field, its first-order sen-
sitivities to source and path parameters can be expressed in terms
of an adjoint field that satisfies (29) (and therefore eqs 23) with an
appropriate source term.

5.1 Quantifying wavefield features

We characterize a given wavefield feature through the value E(v) of
an excitation functional, E : V → R, that is non-linear and has as
its range the non-negative reals, providing a scalar intensity measure
of the wavefield feature. We require E to be Fréchet differentiable
at v0, with Fréchet derivative denoted by DE(v0; ·), a continuous

linear functional, and the first-order variation δE of E in response
to velocity perturbation w is DE(v0; w).

For example, to analyse the SGB/LAB excitation mentioned be-
fore, we have chosen E to be the squared ground velocity inte-
grated over the space–time window in which this feature appears
most prominently. To isolate the feature, and to permit this measure
of basin excitation to give unequal weights to the three directional
components of the velocity field, we define a (symmetric, positive
semi-definite tensor-valued and dimensionless) windowing function
with bounded components Wi j (x, t) and define E by

E (v) =
T∫

0

dt

∫
�̃

1

2

(
ρ0

/
T

)
v · W · vdV , v ∈ V . (43)

In the examples to be presented, we only use scalar windows, that
is, of form W (x, t)δi j , giving equal weight to all components, and
(43) becomes just the mean kinetic energy. We introduce d∗ as a
shorthand for DE(v0; ·), and for the special case where E is defined
by (43), we have (Appendix B)

d∗ (w) =
T∫

0

dt

∫
�̃

(
ρ0

/
T

)
v0 · W · wdV , ∀w ∈ V . (44)

Then, for future reference, we introduce the adjoint field ψd

associated with source d∗, which is defined as the solution to

At
0ψd = d∗. (45)

Recalling (33a) we have At
0 = A0, and comparing (44) with

(27), we note that

d∗ (w) = F [0, 0, 0; 0, bd , 0] (w) =
∫

�̃T

dV bd ∗ w, (46)

where

bd = (
ρ0

/
T

)
� (v0 · W ) . (47)

That is, ψd is a solution to (23) with reference values of the
density and modulus tensor, and right-hand side term b set to bd

as given by (47), that is, proportional to the time reversal of the
windowed reference field v0 · W . With the dimensions we have
assigned E, bd has the dimensions of an applied body-force density,
so ψd has dimensions of displacement (the fact that the dimensional
interpretation of (23) differs from the previous one is irrelevant).

5.2 Adjoint evaluation of source and path sensitivities

Our objective is to calculate d∗(δvχ ), giving the first-order sensitiv-
ity of E to velocity-field perturbations associated with some source
or path perturbation. Inverting (42) for δvχ , we have that

d∗ (
δvχ

) = d∗ (
G0δ f ∗

χ

)
, (48)

and by the definition (32) of the transpose,

d∗ (
δvχ

) = δ f ∗
χ

(
Gt

0d∗) . (49)

Finally, inverting (45) to ψd = Gt
0d∗ and substituting into (49)

gives the general result sought,

d∗ (
δvχ

) = δ f ∗
χ (ψd ) . (50)

The right-hand side of (50) gives perturbation d∗(δvχ ) ≡
DE

(
v0; δvχ

)
in the form of integrations over the reference field

and the adjoint field, so the first-order response of E to a large en-
semble of perturbations can be calculated from these two fields by
simple quadrature, without additional wavefield simulations.

C© 2012 The Authors, GJI, 189, 1103–1124

Geophysical Journal International C© 2012 RAS



Adjoint analysis of basin-guided waves 1111

5.3 Source perturbations

Eq. (50) with subscript χ = s gives the excitation sensitivity to
arbitrary slip-rate perturbation δṡ; substituting from (38) for δ f ∗

s

and using (35) and (36) gives

d∗ (δvs) =
∫

�T

dA
[
α

(
υ̂ · Ċ0 : ∗∇ψd

)+

+ (1 − α)
(
υ̂ · Ċ0 : ∗∇ψd

)−]
∗ δṡ, (51)

and each ± superscripted factor can be interpreted as a fault-plane
traction (positive- and negative-side values, respectively) associated
with ψd . Note that ψd satisfies traction continuity on the fault
plane. The latter is true by (23d), because (45), with source (46), is
equivalent to (23), with all right-hand side terms (and, specifically,
the right-hand side of eq. 23d) equal to zero, apart from b. Therefore
the factors multiplying α and 1 − α, respectively, are equal and the
arbitrary choice of function α(x) introduces no ambiguity in (51).
Our example cases will be computed with an isotropic model and
δṡ · υ̂ = 0, in which case (51) reduces to

d∗ (δvs) =
∫

�T

dA
{
μ̇0 ∗ [∇ψd+ (∇ψd)T] · υ̂

} ∗ δṡ, (52)

where μ̇0 is the distributional time derivative of the unperturbed
shear relaxation function, and the right-hand side can be evaluated
on either the plus or minus side of the fault plane.

As a means of comparing the effects of specific perturbations to
the slip-rate model (e.g. adjusting slip upward by 10 per cent on
one fault segment versus making the same adjustment on another
segment), eq. (51) is rigorous (albeit only first order), and can be
usefully applied to enable many such comparisons for the cost of
simple quadratures. Inherent in (51) is that it correctly accounts for
phase interference between the reference and perturbed fields.

The latter attribute can instead become a liability when we seek a
more synoptic view of the source sensitivity, wherein source changes
may be relatively large (admitting, e.g. changes of rupture velocity,
reversal of rupture direction or change of rupture length). However,
there is an alternative interpretation of (51) that remains useful.
Because of the linearity of the equations of motion, eqs (37) and
(38) still apply when we interpret δṡ, δvs not as perturbations to the
reference fields, but as a complete source and its corresponding ve-
locity field. To obtain the corresponding reinterpretation of d∗(δvs),
we assume that the (complete) source represented by δṡ still excites
the propagation feature of interest that we identified in the reference
field, so that W · δvs(x, t) ≈ kW · v0 (x, t + τ ) + vu (x, t) , where
k and τ are some unknown scale factor and time-shift, respectively,
and vu is a remainder that has negligible correlation with W ·v0 (this
approximation is motivated by the persistence, over diverse south-
ern SAF scenarios, of specific waveguide-like effects, as noted in
Section 2). Then, we use (51) to evaluate d∗[δvs (x, t − τ ′)] repeat-
edly, adjusting τ ′ to maximize its absolute value, and we note that
(by 44) this maximum (at τ ′ = τ ) is proportional to excitation factor
k associated with source δṡ.

5.4 Path perturbations

Eq. 50 with subscript χ = C gives the sensitivity to modulus
variations. Substituting for δ f ∗

C from (40) and (41), and using the fact
that ψd is continuous across the fault plane (by the same reasoning

as in the last paragraph), we obtain

d∗ (δvC ) = δ f ∗
C (ψd ) = −

∫
�̃T

dV ∇ψd : ∗ δĊ : ∗∇v0. (53)

If only the unrelaxed modulus is perturbed, so that δĊ =
δcu(x)δ (t) , (53) becomes essentially identical to the expression
derived in adjoint tomography for the sensitivity of the misfit func-
tion to modulus perturbations, for example Liu & Tromp (2006)
(except for the nature of the source terms generating the fields v0

and ψd ). Following those authors, we can rewrite (53) as

d∗ (δvC ) = δ f ∗
C (ψd ) =

∫
�̃

dV δcu :: K C , (54)

where the fourth-order kernel tensor K C (x) is given by

K C = −
T∫

0

∇ (�v0) ∇ψd dτ , (55)

and the notation in (54) indicates (following Liu & Tromp) contrac-
tion on all four indices. For the case of an isotropic medium, we
can simplify by decomposing the second-order tensor δcu : ∇ψd

into isotropic and deviatoric components, multiplied, respectively,
by bulk and shear moduli, κ and μ. This decomposition leads to
separate scalar kernels Kκ and Kμ for calculating responses d∗(δvκ )
and d∗(δvμ) to perturbations in κu and μu, respectively; and these
in turn can be combined to give two scalar-valued kernels Kα and
Kβ for calculating responses d∗(δvα) and d∗(δvβ ) to perturbations
to the P and S wave speeds, respectively. These results are all given
by Liu & Tromp (2006), and Appendix C summarizes them in the
present notation (for consistency with Liu and Tromp, we use sub-
scripts α and β in this paragraph and in Appendix C to refer to the
wave speeds; this, of course, differs from our use of α and β in other
contexts). In the applications, we use functions Kα(x) and Kβ (x) to
illuminate the predominant propagation wave types and pathways
that contribute to the basin excitations under investigation.

5.5 Computation of adjoint field

To obtain the results in the next section, we compute a nu-
merical solution for ψd by introducing source term bd (x, t) =(
ρ0

/
T

)
v0 (x, T − t) · W (x, T − t) into the same finite difference

code used to compute reference solution v0, treating the source
term the way one would ordinarily treat a body-force density and
the adjoint field as though it were a displacement field. Then the
bracketed factor in (52) corresponds to what would ordinarily be
interpreted in the finite difference code as a fault-resolved shear
stress, which we refer to here as the adjoint stress field. We save the
adjoint stress field on the fault surface and calculate an ensemble of
source-induced perturbations from (52). Likewise, from the same
adjoint field we save the displacement gradient ∇ψd and calculate
Kα(x) and Kβ (x) from (55) using Appendix C.

6 A P P L I C AT I O N T O S A F E A RT H Q UA K E
S C E NA R I O S

The method described in Section 5 has been applied to analyse
the ShakeOut V1.2 scenario (Jones et al. 2008) mentioned in Sec-
tion 2. In that simulation of a M7.8 northeastward-rupturing SAF
event in southern California, the LAB and the Ventura basin (VTB)
each showed strong excitation, and inspection of the simulations
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Figure 2. Horizontal peak ground velocities (m s–1) obtained from an elastodynamic simulation of ShakeOut V1.2b. The thick white line along the SAF
shows the portion of the fault that ruptured in the scenario. The intersection of the interior of the 1 m s–1 PGV contour and the yellow rectangle defines the
spatial window for the Ventura Basin excitation functional; the LAB window is similarly defined using the cyan rectangle. The Supporting Information to this
paper contains an animation of ground velocities for the elastodynamic simulation (Video S1).

suggests an interpretation in which waveguide-like channelling by
sedimentary basins is partly responsible for the high amplitudes.

ShakeOut was calculated using the Southern California Earth-
quake Center (SCEC) Community Velocity Model (CVM) Version
4 (Magistrale et al. 2000; Kohler et al. 2003). Fig. 2 shows the
horizontal peak ground velocities. We excluded anelastic attenua-
tion from this calculation (in order to have a somewhat simplified
test case); had we included anelastic attenuation (as in previous
calculations for this scenario by ourselves and other, e.g. Graves
et al. 2008; Olsen et al. 2009; Bielak et al. 2010), PGV values in
Fig. 2 would have been somewhat lower. In this case, however, the
subsequent sensitivity analyses are little affected by the neglect of
attenuation (the basin excitations under study having predominant
periods of several seconds).

The computational domain of the ShakeOut scenario includes a
volume of 600 × 300 × 80 km3, discretized by 1.8 billion nodes,
with a horizontal discretization interval of 200 m. To facilitate the
subsequent calculation of the source and path sensitivities (over a
range of depth slices), we saved the velocities inside a 200 × 100 ×
16 km3 volume that includes the southern SAF and the western
parts of the LAB and VTB (rectangles in Fig. 2) containing high
amplitudes. This information allows us to construct the source for
the adjoint calculation described in Section 5.5, and provides the
reference-field factor for the path kernels (55).

We evaluate the sensitivity of LAB and VTB excitations to per-
turbations of the fault slip that we parametrize in terms of location
and rupture velocity. Each slip-rate perturbation takes the form of a
triangular slip pulse of duration 10 s, propagating unilaterally along
the local fault strike (either toward northwest or southeast) over a
50-km-fault segment, at a constant velocity. The slip amplitude is
tapered with a cosine window in the along-strike direction; ampli-
tude is constant in the upper 8 km, then cosine-tapered between 8
km and 16 km depth. We parametrize the slip perturbation in terms

of the segment location (its along-strike centre) and its rupture ve-
locity, in each case selecting the origin-time to maximize |d∗(δvs)|
in order to represent the source sensitivity independently of the
potentially random phase-interference between the reference and
perturbed fields, as discussed in the final paragraph of Section 5.3.

6.1 Los Angeles basin excitation

To define the LAB excitation functional, we set the window W (x, t)
in (43) to be the product of a spatial window and a temporal window.
The spatial window includes the upper grid-cell layer (200 m deep)
within the geographical region given by the intersection of (i) the
area indicated by the cyan rectangle in Fig. 2 and (ii) the 1 m s–1

peak horizontal ground velocity contour of the reference simulation;
W is set to zero outside that zone. This definition puts the focus on
the origin of high-amplitude excitation in the deepest parts of the
Los Angeles basin, which lies some 50 km from the nearest point
of the ShakeOut scenario rupture. The temporal factor of window
W has the value one from time zero until t = 176 s, and then
tapers linearly to zero at t = T = 187 s. This choice for the time-
interval endpoint T corresponds to the time when the dominant
surface wave train has reached the southern margin of the Los
Angeles basin, as determined from inspection of velocity snapshots
of the reference simulation. All velocity time-series in this window
were then time-reversed and applied as a body-force density in the
adjoint simulation for ψd , as described in Section 5.5. We saved
the adjoint field over a sufficiently large volume to enable (together
with the stored reference simulation) the calculation of the path
sensitivity kernels (eq. 55 and Appendix C). We also saved the
adjoint shear-stress on the fault surface to enable calculation of the
source sensitivities via (52) (Video S2 in the Supporting Information
to this paper is an animation showing ψ̇d on the free surface and
adjoint shear stresses on the fault).
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6.1.1 Source sensitivity calculations

Fig. 3 shows the resulting source sensitivity as a function of location
along the ShakeOut scenario rupture trace, with each curve repre-
senting a particular rupture velocity and rupture direction (solid
curves for northwestward rupture, dashed for southeastward). Only
relative values are meaningful and sensitivities have been normal-
ized to fit within the zero to one range. The most striking feature of
this figure is the extremely great difference between northeastward
and southwestward rupture directions. This remarkably strong di-
rectivity effect on Los Angeles Basin excitation was first identified
by Olsen et al. (2006) from a pair of M7.7 simulations, and was seen
again in subsequent studies; Fig. 3 confirms that the large directivity
effect is present for a wide range of rupture velocities, and applies
individually to rupture contributions coming from everywhere on
the ShakeOut rupture surface, apart from the northernmost 50 km
(where both rupture directions contribute comparable excitation).
From here on, therefore, we focus on the northwestward rupture
velocities (solid curves). A high-sensitivity zone runs from roughly
the Cajon Pass (halfway between points B and C) to the northern
Coachella Valley (about halfway between C and D), with the maxi-
mum sensitivity just to the SE of bend C. Sensitivity for the southern
segment DE is still significant, but about a factor of three lower than
the peak near bend C. The northern segment AB yields markedly
lower LAB excitation than do other segments, and its contribution
decreases rapidly towards the NW end of the ShakeOut rupture. The
LAB excitation sensitivity at the peak near bend C is highest for
a (northwestward) rupture velocity ∼3250 m s–1 and diminishes
fairly rapidly for velocities below about 3000 m s–1.

Fig. 4 shows the rupture velocities used to evaluate the source sen-
sitivities, normalized by the shear wave velocity on the fault plane.
The ratios are binned into four ranges, distinguishing sub-Rayleigh,
super-Rayleigh to subshear, supershear to subsonic and supersonic
rupture-velocity categories. For slip located near bend C (the sensi-
tivity peak in Fig. 3), the highest sensitivity is for rupture velocities
in the range ∼3000–3500 m s–1. Near bend C, 3000 m s–1 falls in the
rupture-velocity range (between local Rayleigh and S wave speeds)
that is energetically forbidden (asymptotically, for small frictional

breakdown zone), and 3500 m s–1 is only marginally above the for-
bidden range. Numerical simulations of dynamic rupture (Ely et al.
2010) indicate that, even in complex ruptures undergoing large fluc-
tuations in rupture velocity (for which the asymptotic result is not
strictly applicable), there is diminished occurrence of rupture ve-
locities within and near the asymptotically forbidden range, relative
to both higher and lower velocities. Thus, it appears that the LAB
is most strongly excited by rupture in a velocity range that may be
energetically disfavoured. This emphasizes the need for caution in
the construction of kinematic source parametrizations (which are
typically not constrained by energetic considerations), and the pos-
sible benefits of informing those parametrizations with results from
spontaneous rupture models (Day et al. 2008b; Olsen et al. 2008,
2009).

6.1.2 Comparison with forward simulations

We compare the foregoing estimates of LAB source sensitivities
with results from a set of forward simulations for individual seg-
ments of the ShakeOut scenario (in this case including anelastic
attenuation), for which peak velocity maps are shown in Fig. 5.
Fig. 5(a) is for rupture confined to the northernmost segment, AB,
and Fig. 5(b) is for the central segment BD. Segment AB produces
very low amplitudes in LAB, less than 25 per cent of those from the
BD rupture. This result would have been a priori very surprising,
since segment AB is on average considerably closer to LAB than
is segment BD (and only ∼30 per cent lower in length and seismic
moment); yet the result is in good agreement with expectations from
the adjoint analysis in Fig. 3 (even though we have made no effort
to conform the rupture segments used in the synoptic analysis in
Fig. 3 with the specific ruptures used for Fig. 5). Comparing LAB
excitation from northernmost rupture AB with that from southern-
most rupture DE (Fig. 5c), we again obtain a result that would have
been very surprising a priori, namely that rupture of DE generates
LAB amplitudes more than twice as high as those from AB, even
though the latter is far closer to LAB and has rupture length (and
moment) almost twice that of DE. And, again, this relationship is
consistent with the adjoint-derived sensitivities in Fig. 3.

Figure 3. LAB excitation sensitivity (from eq. 52) for slip perturbations to ShakeOut scenario that are parametrized by location (distance along SAF from
NW to SE along the SAF) and rupture velocity, as described in text. Curves are solid for rupture from SE to NW, dashed for rupture from NW to SE.
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Figure 4. Rupture velocities compared with the speeds of S, P and Rayleigh waves (the latter approximated by the Poisson solid value of 0.92 times the S-wave
speed) along the fault.

6.1.3 Path sensitivity kernels

Fig. 6 shows the P- and S-wave path-sensitivity kernels Kα and
Kβ , computed from convolutions of the reference- and adjoint-field
gradients via (55), specialized to isotropy as in Appendix C. The
map views in Figs 6(a) and (b) show horizontal slices of Kα and
Kβ , respectively, at 1 km depth, while the fence diagrams in Figs
6(d) and (e) contain the cross-sections indicated in the map views.
Figs 6(c) and (f) show, in the same format, the SCEC CVM-4
S-wave speed distribution. Since these kernels are indices of the
sensitivity of the LAB excitation to wave-speed perturbations, they
illuminate the predominant pathways of seismic energy entering
the basin in the reference scenario. Because the sensitivities are
predominantly negative (wave speed increase is associated with
reduced excitation), the colour map in Fig. 6 was limited to the
negative part of the kernels, and our discussion will be in terms of
absolute value (i.e. high sensitivity will mean high |Kα| and/or high
|Kβ |).

One pathway delineated by the kernels projects roughly west-
ward from the centre of fault segment BC, along the southern mar-
gin of the transverse ranges, following the LAB-San Bernardino
cross-section. Inspecting that cross-section, we see that this feature
represents a surface wave path. East of the cross-section bend NE
of Pasadena, the kernels along this path extend to depths an order of
magnitude greater than the depth extent of the sedimentary layers

(which are at most a few hundred metres thick there). However,
as seen in Fig. 6(c), there is a more deep-seated corridor along the
southern margin of the transverse ranges where basement S velocity
is reduced relative to the transverse ranges to the north and Penin-
sular Ranges to the south, and this deeper velocity contrast appears
to be at least partially responsible for prominence of this pathway in
deflecting seismic energy westward from the SAF. Where this cross-
section bends west–southwestward near Pasadena, the S-wave ker-
nel attains very high amplitude in the SGB (where sediment depth
is several kilometres), indicating a strong interaction of the surface
wave with the northeastern edge of that basin, which then entrains
and funnels surface wave energy into LAB. A careful comparison of
the cross-sections reveals that Kβ increases abruptly near the point
marked Pasadena on the cross-section, without a comparable jump
in Kα , suggesting that the basin-edge interaction occurs largely as
a conversion to Love waves. This latter part of the path matches
the conceptual picture of the SGB acting as a sedimentary waveg-
uide, as suggested by Olsen et al. (2006), and the predominance
of the S-wave kernel is consistent with their identification of this
feature as (predominantly) a channelled Love wave (and Ma et al.
2007, from direct inspection of simulations, also proposed that the
SGB basin-edge induced strong Love-wave conversions). To the
east of SGB, the adjoint analysis requires a refinement of the Olsen
et al. sedimentary-channelling conceptual picture, in that basement
structure may be at least as important as the sedimentary layer in
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Figure 5. PGVs for partial simulations of the ShakeOut scenario. (a) Northernmost segment AB rupturing alone (maximum PGV in dashed square zone
around LAB and SGB is 0.44 m s–1). (b) Central segment BD rupturing alone (maximum PGV in LAB/SGB is 1.9 m s–1). (c) Southernmost segment DE
rupturing alone (maximum PGV in LAB/SGB is 0.93 m s–1).

inducing the initial westward deflection of the relatively long-period
(4–5 s) surface waves that dominate LAB excitation (in the sense
of our mean kinetic energy functional E).

A second, subparallel pathway is evident south of the previous
one, and just north of the EW cross-section that terminates in Long
Beach. This feature, likewise a surface wave, skirts the northern
edge of the Peninsular Ranges near Riverside, then interacts strongly
with the eastern edge of the LAB, NE of Anaheim. The two pathways
are separated by the Puente and Chino Hills (just NE of the Glendale-
Anaheim cross-section) as they enter LAB, and they merge in the
very deep, central portion of that basin.

The path kernels are also consistent with the source sensitivities
noted above. As they encounter the SAF, the kernels have high am-

plitude on fault segment BC and on the most northwesterly part of
segment CD, consistent with the regions of highest source sensi-
tivity. The low source sensitivity for southwestward rupture is also
consistent with the nature of the path kernels: the northwestward
propagating forward directivity pulse developed by a northwest-
ward SAF rupture beginning at (or south of) the predominant EW
pathways imaged by kernels Kα and Kβ is readily deflected through
the small angle that those paths make with the SAF. This would not
be true for a southeastward rupture, nor for a northwestward rupture
beginning north of intersection of those paths with the SAF, and all
these inferences are confirmed by the source sensitivity functions
in Fig. 3. Finally, note that in both kernels (though a little more
evidently in Kα), there is a visible, though very weak, connection
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Figure 6. One-kilometre depth slices of the path sensitivity kernel (a) Kα and (b) Kβ for LAB, with (c) S-wave speed depth slice for comparison. Red lines
in (a) and (b) and white lines in (c) show the cross-section locations for the corresponding fence diagrams in (d), (e) and (f), respectively (the Supporting
Information to this paper contains Figs 6(a)–(c) in KMZ format for display in Google Earth R© or other similar software).

between SAF segment DE and the southern part of LAB near Santa
Ana, indicating that a small component of the LAB excitation is
induced by waves taking a more direct path and interacting with the
SE edge of LAB.

6.2 VTB excitation

We use the same method to explore the origins of the large ground
motion generated by the ShakeOut scenario in the VTB. In this case,
the excitation functional E was again defined by (43), now with the
spatial factor of window W given by the part of the upper grid-cell
layer that is both (i) within the urban area around Oxnard (yellow
rectangle in Fig. 2) and (ii) experienced reference-simulation PGV
exceeding 1 m s–1.

6.2.1 Source sensitivity kernels

The source sensitivity analysis is shown in Fig. 7, and it confirms
that the Oxnard area excitation of the VTB (which we will refer to
simply as the VTB excitation) is most sensitive to northwestward
rupture near the centre of SAF segment AB. Southeast of bend C
the sensitivity decreases steadily, with the southern segment DE
contributing only marginally to the waveguide amplifications. In all
segments, sensitivity is very low to southeastward rupture, usually
more than an order of magnitude lower than for northwestward rup-
ture. Focusing just on the northwestward-rupture case, sensitivity
reaches its highest values, and is nearly invariant, throughout the
rupture velocity range 3250–4000 m s–1 (the highest we computed),
decreasing monotonically for lower rupture velocities. A compar-
ison with the local S-wave velocity along the fault (Fig. 4) shows
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Figure 7. Ventura Basin excitation sensitivity for slip perturbations to ShakeOut scenario that are parametrized by location and rupture velocity, as described
in text. Curves are solid for rupture from SE to NW, dashed for rupture from NW to SE.

that the rupture is mostly super-shear for this high-sensitivity range,
and sometimes inside the (asymptotically) energetically precluded
regime, again suggesting that physical constraints on the source
kinematics may reduce unphysical extremes in ground motion pre-
dictions.

6.2.2 Path sensitivity analysis

Fig. 8 shows path sensitivities, both in cross-section and as depth
slices at 2 km. The dominant feature in map view (Figs 8a and b) is
a channel with high S-wave sensitivity along the VTB all the way
from the coastline to the San Gabriel mountains (near point D on the
cross-section map, Fig. 8f). Further east there is a gradual decrease
of the S-wave kernel, accompanied by a steady increase in the P-
wave kernel, suggesting that seismic energy is transferred from the
fault to the eastern margin of the VTB largely via Rayleigh waves,
with substantial mode conversion to Love waves occurring at the
basin margin (near point C on the cross-section). This interpretation
is reinforced in the cross-sections, where an abrupt increase in the
amplitude of the S-wave kernel is clear near point C (compared with
a much less prominent increase in the P-wave kernel). The presence
of this EW waveguide-like feature explains the high sensitivity of
the VTB excitation to rupture on the northern segment AB of the
SAF (Fig. 7).

It is noteworthy that the VTB sensitivity kernels in Fig. 8 are
very small in SGB and LAB, even though, taken separately, both
the reference simulation (Fig. 2) and the VTB adjoint simula-
tion (not shown) produce very high amplitudes in the SGB and
LAB. This confirms that the path sensitivity kernels are indeed re-
vealing the regions sampled by the seismic waves that excite (in
this case) the VTB, and are not simply highlighting areas of low
impedance.

7 . S U M M A RY A N D C O N C LU S I O N S

The velocity field of a viscoelastic medium in response to a kinemat-
ically defined fault slip satisfies a function-valued operator equation,
with the operator equal to its transpose. This formulation (con-

structed here following Herrera & Bielak 1974) is one way of en-
coding well-known reciprocal relationships (e.g. Tarantola 1988),
and provides a convenient setting for the analysis of the response of
a numerically simulated velocity field (the reference field) to pertur-
bations of the fault slip and medium properties. When a prominent
feature of that velocity field, such as a basin excitation, is quanti-
fied by some (generally non-linear) excitation functional E (time-
averaged kinetic energy in our examples), eq. (50) represents the
first-order sensitivity of that functional to a slip or wave speed per-
turbation, in the form of a linear functional acting on the so-called
adjoint field. The latter satisfies the same operator equation as the
reference field, but with a source given by the Fréchet derivative of
E, and a single adjoint simulation permits the evaluation of a large
ensemble of perturbations. Representing the source perturbations as
localized, propagating slip-rate pulses yield a comprehensive view
of the source sensitivity. Despite its different conceptual origin,
the analysis leads to calculations analogous to those of adjoint to-
mography, in particular leading to calculation of spatial functions
(kernels Kα and Kβ ) that image the principal propagation pathways
and wave types controlling the excitation functional.

Adjoint analysis of prominent basin excitations visible in the
ShakeOut simulation of a M7.8 earthquake scenario on the south-
ernmost 300 km of SAF leads to a refined understanding of the
origin of these excitations. Excitation of the LAB is extremely sen-
sitive to rupture directivity, with excitation amplitude being about
an order of magnitude more sensitive to northwestward rupture
than to southeastward rupture. Highest sensitivity is to rupture be-
tween roughly the Cajon Pass and the northern Coachella Valley,
and to rupture velocities of about 3000 m s–1 and above. Much of
the high-sensitivity rupture-velocity range lies in or near the ener-
getically disfavoured range between Rayleigh and S wave speeds,
and spontaneous rupture models might shed valuable light on the
relative likelihood of occurrence of the (kinematically defined) sce-
narios that produce the most extreme LAB excitations. The propa-
gation pathways highlighted by the adjoint analysis are dominated
by surface waves—deflected westward onto the corridor between
the Transverse and Peninsular Ranges—that become channelled
into LAB when they interact, respectively, with (i) the northeast-
ern edge of SGB and (ii) the eastern edge of LAB south of the
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Figure 8. Two-kilometres depth slices of the path sensitivity kernel (a) Kα and (b) Kβ for Ventura Basin, with (c) S-wave speed depth slice for comparison.
Fence diagrams (d) for Kα and (e) for Kβ show the indicated cross-sections (the Supporting Information to this paper contains Figs 8(a)–(c) in KMZ format
for display in Google Earth R© or other similar software).

Chino and Puente Hills. Excitation of the western region of VTB is
similarly dominated by the northwestward-propagating directivity
pulse, which excites strong Love waves at the eastern margin of the
VTB that are then channelled toward the WSW. By illuminating the
path and source sensitivities of these large sedimentary-basin exci-
tations, the two adjoint simulations provide a much clearer guide
than we would otherwise have for further studies of the seismic
hazard and engineering implications of the ShakeOut simulation
(and its predecessor SAF scenarios, e.g. Olsen et al. 2006, 2008).
It is clear, for example, that scenarios with northwestward, super-
shear rupture and high slip between the transverse ranges and the
Coachella Valley will sample the extremes of the probability dis-
tribution for LAB excitation from southernmost SAF earthquakes.
The analysis also highlights those features of our current models
of seismic velocity structure that are most critical for accurate pre-

diction of basin response, and therefore are especially important
targets for observational studies (e.g. tomographic inversions such
as those of Chen et al. 2007; Tape et al. 2009).

Similar analysis of numerical simulations may be useful in other
environments where complex propagation paths induced by strong
lateral gradients in structure produce a first-order effect on seismic
hazards. Simulations have revealed substantial waveguide-like ef-
fects in accretionary wedges, for example (e.g. Shapiro et al. 2000),
and these complexities in wave propagation probably lead to similar
complexities in the source and path sensitivities of strong motion
predictions. It is also straightforward to obtain sensitivities to other
parameters not explicitly considered in our examples, such as atten-
uation parameters. Finally, one could construct other measures of
excitation besides the average kinetic energy functional chosen for
our examples, the requirement being that the functional possess a
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Fréchet derivative, so that the latter can be introduced as the adjoint
source in (45).

This type of analysis also has some distinct limitations. It relies
on the qualitative, visual identification of wavefield elements having
some degree of space–time coherence, as is the case for the basin
excitations treated here. We have not explored more systematic ap-
proaches to identifying wavefield features for analysis. The adjoint
analysis also involves a linearization about the reference solution.
More general slip-rate changes can be considered by invoking an
alternative interpretation of the Fréchet derivative, at the cost of
introducing the ancillary assumptions discussed in Section 5.3. The
utility of this latter approach was tested and confirmed for the case
of LAB excitation, by comparing forward simulations (Fig. 5) with
inferences from the adjoint analysis (i.e. Fig. 3), but we currently
have no firm basis from which to define the limits of applicability
of the approach.
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A P P E N D I X A : D E R I VAT I O N O F a(v, w) A N D f ∗.

Letting (X j , j = 0, . . . , 5) serve as shorthand for (H, B1, B2, B2, B3, B3), which are Hilbert spaces containing, respectively, the ranges of the
left-hand sides of the six governing equations (23a–f), we define six corresponding linear operators κ j , j = 0, ..., 5, such that κ j : V → X j

(e.g. κ0 : V → H, κ1 : V → B1, etc). Then, for w ∈ V, form inner products of each of (23a–f) with the corresponding function κ j w. The
result is to transform (23) into

K j v = f ∗
j , j = 0, ..., 5, (A1a-f)

which (for the sake of concision) has been expressed in terms of linear operators K j : V → V ∗ defined by

K0v (w) = (Lv, κ0w)H , (A2a)

K1v (w) ≡ (β1v, κ1w)B1
, (A2b)

K2v (w) ≡ (
γ 


2 v, κ2w
)

B2
, (A2c)

K3v (w) ≡ (
β


2 v, κ3w
)

B2
, (A2d)

K4v (w) ≡ (
γ I

3 v, κ4w
)

B3
, (A2e)

K5v (w) ≡ (
β I

3 v, κ5w
)

B3
; (A2f)

and functionals f ∗
j containing the loads, boundary conditions and initial state,

f ∗
0 (w) =

((
−∇ · p + b + ∇ · Ṫ

>
)

, κ0w
)

H
, (A3a)

f ∗
1 (w) = (

pn − Ṫ>
n , κ1w

)
B1

, (A3b)

f ∗
2 (w) = (ṡ, κ2w)B2

, (A3c)

f ∗
3 (w) =

((

pυ − 
Ṫ>

υ

)
, κ3w

)
B2

, (A3d)

f ∗
4 (w) = (vini t , κ4w)B3

, (A3e)

f ∗
5 (w) = (ρaini t , κ5w)B3

(A3f)

(the usage in this Appendix of the notation f ∗
0 for the volume-integral contribution to the source functional f ∗ is distinct from its usage

elsewhere to indicate the source functional for the reference simulation).
The subspace V0 ⊂ V denotes all w ∈ V such that the support of w is disjoint to the space–time boundaries �1, �2, �3 ×{0} and �3 ×{T } of

R. For j = 1, ..., 5, respectively, Vj ⊂ V will denote the intersection of the null spaces of the four κk k �= j. We stipulate that κ j be such that
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κ j |Vj (that is, the restriction of κ j to Vj ) has range dense in X j , implying that the orthogonal complement of Rg(κ j |Vj ) in X j is empty, and that
therefore inner product (v, κ j w)X j is zero for all w ∈ Vj if and only if v = 0; we also require the κ j to be such that V0 ⊆ V1 ∩ V2 ∩ V3 ∩ V4 ∩ V5

(i.e. any function with support disjunct to the space–time boundaries must be in the null space of all κ j , j = 1, ..., 5). With these stipulations,
the sum of these six inner products satisfies criteria (i) and (ii) of the first paragraph of Section 4.2, so that

a (v, w) − f ∗ (w) = 0, (A4a)

with

a (v, w) ≡
5∑

j=0

K j v (w) , (A4b)

and

f ∗ ≡
5∑

j=0

f ∗
j , (A4c)

is equivalent to governing eqs (23). Property (i) is obviously satisfied, by construction, and we now demonstrate property (ii), assuming
provisionally that the κ j satisfy the dense range condition stated above. Subsequently we will impose property (iii) of Section 4.2 (symmetry
of a) by an appropriate selection of the mappings κ j , and then verify that they satisfy the dense range condition.

To demonstrate that property (ii) holds, we first note (via the divergence theorem and integration by parts on the left-hand side of eq. A.2a)
that

K0v (w) = ã (v, w) − B1v (γ1 ◦ κ0w) + B

2 v

(
γ 1−α

2 ◦ κ0w
)

+Bα
2 v

(
γ 


2 ◦ κ0w
) + BF

3 v
(
γ F

3 ◦ κ0w
) − B I

3 v
(
γ I

3 ◦ κ0w
) , (A5)

where ã incorporates the integrations on R,

ã (v, w) ≡ − (ρv̇, κ0ẇ)H + [
Ċ : ∗∇v, ∇ (κ0w)

]
H⊗H

, (A6)

and the each of the following operators maps V into B∗
1 , B∗

2 or B∗
3 ,

B1v ≡ (β1v,·)B1
, (A7a)

B

2 v ≡ (

β

2 v,·)

B2
, (A7b)

Bα
2 v ≡ (

βα
2 v,·)

B2
, (A7c)

BF
3 v ≡ (

βF
3 v,·)

B3
, (A7d)

B I
3 v ≡ (

β I
3 v,·)

B3
, (A7e)

By similar transformation of (A3a), f ∗
0 (w) can be written as

f ∗
0 (w) =

[
p − Ṫ

>
, ∇ (κ0w)

]
H⊗H

+ (b, κ0w)H

− (
pn − Ṫ>

n , γ1 ◦ κ0w
)

B1
+ (


pυ − 
Ṫ>
υ , γ 1−α

2 ◦ κ0w
)

B2

, (A8)

For w ∈ V0, (A4a) reduces to

K0v (w) = f ∗
0 (w) , w ∈ V0, v ∈ V, (A9a)

which, with definitions (A2a) and (A3a), is

(Lv, κ0w)H =
((

−∇ · p + b + ∇ · Ṫ
>
)

, κ0w
)

H
, w ∈ V0, v ∈ V, (A9b)

from which it follows that (23a) is satisfied on every open set in R whose closure excludes the boundary. Because V0 is dense in H, the
orthogonal complement (in H ) of V0 is empty. Therefore (A9) can be extended to all w ∈ V, so we conclude that

K0v (w) = f ∗
0 (w) for all w ∈ V, v ∈ V . (A10)

For w ∈ Vj , (A4a) reduces to

K0v (w) + K j v (w) = f ∗
0 (w) + f ∗

j (w) , w ∈ Vj ,v ∈ V , j = 1, ..., 5, (A11a-e)

which, with (A10), implies

K j v (w) = f ∗
j (w) , w ∈ Vj ,v ∈ V , j = 1, ..., 5. (A12a-e)

Therefore, for each j, the corresponding boundary condition in (23) is satisfied ( j = 1, ..., 5 corresponding, respectively, to 23b–f),
showing that property (ii) holds for (A4).
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We now impose the symmetry property (iii). Since a(v, w) = ã (v, w) for v, w ∈ V0, symmetry of ã is a necessary condition for symmetry
of a, and from (A6a) we can see (because Ci jpq = Cpqi j ) that ã is symmetric if we specify κ0 to be the time-reversal mapping �,

κ0w (x, t) = �w (x, t) ≡ w (x, T − t) . (A13)

Then (A4b) and (A5), for w ∈ Vj , j = 1, ..., 5, give

a (v, w) − ã (v, w) = −B1v (γ1 ◦ �w) + K1v (w) , w ∈ V1,v ∈ V, (A14a)

a (v, w) − ã (v, w) = B

2 v

(
γ 1−α

2 ◦ �w
) + Bα

2 v
(
γ 


2 ◦ �w
)

+K2v (w) + K3v (w) , w ∈ V2 ∪ V3, v ∈ V,
(A14b)

a (v, w) − ã (v, w) = BF
3 v

(
γ F

3 ◦ κ0w
) − B I

3 v
(
γ I

3 ◦ �w
)

+K4v (w) + K5v (w) , w ∈ V4 ∪ V5, v ∈ V .
(A14c)

By substituting into (A14) from definitions (A2) and (A7), we get

a (v, w) − ã (v, w) = − (β1v, γ1 ◦ �w)B1
+ (β1v, κ1w)B1

, w ∈ V1,v ∈ V, (A15a)

a (v, w) − ã (v, w) = (
β


2 v, γ 1−α
2 ◦ �w

)
B2

+ (
βα

2 v, γ 

2 ◦ �w

)
B2

+ (
γ 


2 v, κ2w
)

B2
+ (

β

2 v, κ3w

)
B2

, w ∈ V2 ∪ V3, v ∈ V,
(A15b)

a (v, w) − ã (v, w) = (
βF

3 v, γ F
3 ◦ �w

)
B3

− (
β I

3 v, γ I
3 ◦ �w

)
B3

+ (
γ I

3 v, κ4w
)

B3
+ (

β I
3 v, κ5w

)
B3

, w ∈ V4 ∪ V5, v ∈ V .
(A15c)

Obviously, the required symmetry is achieved if we chose κ j , j = 1, . . . , 5, to be

κ1w = γ1 ◦ �w, (A16a)

κ2w = βα
2 ◦ �w, (A16b)

κ3w = −γ 1−α
2 ◦ �w, (A16c)

κ4w = −β I
3 ◦ �w = βF

3 w, (A16d)

κ5w = γ I
3 ◦ �w = γ F

3 w, (A16e)

which can also be expressed by specifying

K1v (w) = B1v (γ1 ◦ �w) , (A17a)

K2v (w) = Bα
2 w

(
γ 


2 ◦ �v
)
, (A17b)

K3v (w) = −B

2 v

(
γ 1−α

2 ◦ �w
)
, (A17c)

K4v (w) = BF
3 w

(
γ F

3 ◦ �v
) = BF

3 w
(
γ I

3 v
)
, (A17d)

K5v (w) = B I
3 v

(
γ I

3 ◦ �w
) = B I

3 v
(
γ F

3 w
)
. (A17e)

From (A4b), (A5), (A7) and (A17), we obtain

a (v, w) = − (ρv̇, κ0ẇ)H + [
Ċ : ∗∇v, ∇ (�w)

]
H⊗H

+ (
βα

2 v, γ 

2 ◦ �w

)
B2

+ (
βα

2 w, γ 

2 ◦ �v

)
B2

+ (
βF

3 v, γ I
3 w

)
B3

+ (
βF

3 w, γ I
3 v

)
B3

. (A18)

Then from (A3a), (A4c) and (A8) we have

f ∗ (w) = [
p − Ṫ>, ∇ (�w)

]
H⊗H

+ (b, �w)H

+ (
ṡ, βα

2 ◦ �w
)

B2
+ (

vini t , β
F
3 w

)
B3

+ (
ρaini t , γ

F
3 w

)
B3

. (A19)

Finally, we verify that the operators given by (A16) have the dense range property, that is, that Rg(κ j |Vj ) is dense in X j , j = 1, . . . , 5.

Let Dk ⊂ Bk,k = 1, 2, 3, denote the smooth functions (possessing continuous partial derivatives of all orders) with compact support
on the interior of �k (e.g. D2 consists of the smooth functions with compact support on (� − ∂�) × (0, T )). Let any set of 10 functions
f1, g1 ∈ D1,f

+
2 , g+

2 , f−
2 , g−

2 ∈ D2,f I
3 , gI

3, f F
3 , gF

3 ∈ D3, be specified. Set the left-hand sides of (19), (20b) and (20c) to g1, g+
2 and g−

2 , respectively.
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Decompose the right-hand side gradients into normal and tangential gradients, using the decomposition ∇ = n̂(n̂ · ∇)+ [(I − n̂n̂) · ∇]◦γ1 on
�1, and make the corresponding decompositions on �±

2 . In (19), set the first (normal derivative) term to d1 and the second (tangential) term
to [(I − n̂n̂) · ∇]f1, with corresponding assignments d±

2 and [(I − n̂n̂) · ∇]f±
2 in (20b,c). The resulting equations can be solved (using eq. 15

to invert the stress-strain relationship) to determine d1 ∈ B1 and d±
2 ∈ B2, and we can also define dI

3 ≡ ρ−1gI
3 ∈ B3 and dF

3 ≡ ρ−1gF
3 ∈ B3.

Each dk is a differentiable function (since we have assumed positivity and differentiability of density, and the tensor J in eq. 15 inherits the
assumed differentiability of tensor C), with compact support in the interior of �k (inherited from Dk). It is straightforward to construct (using
a partition of unity argument, with local flatting of the boundaries �1 and �2, applying the fact that the support of any function in Dn is
disjoint from that of any function in Dn,n �= m) a w ∈ V such that γ1w = f1,γ2w = (f+

2 , f−
2 ),γ3w = (

f I
3 , f F

3

)
, and such that the corresponding

normal derivatives are d1, d±
2 and dI

3 and dF
3 . This w will then also satisfy β1w = g1,β2w = (g+

2 , g−
2 ),β3w = (

gI
3, gF

3

)
. This conclusion can

be summarized by defining the operator γ : V → (B1)2 × (B2)4 × (B3)4 as

γ w = (
γ1w, β1w, γ +

2 w, γ −
2 w, β+

2 w, β−
2 w, γ I

3 w, γ F
3 w, β I

3 w, βF
3 w

)
, (A20)

and noting that (D1)2 × (D2)4 × (D3)4 ⊂ Rg (γ ) . Because D j is dense in Bj (a standard result from functional analysis, e.g. Renardy &
Rogers 2004, p. 220), and each operator in (A16) is a linear combination of component operators from (A20), we have that the restriction of
each κ j to the null space of the other four has a range dense in Bj .

A P P E N D I X B : F R É C H E T D E R I VAT I V E O F E XC I TAT I O N F U N C T I O NA L

Functional E is Fréchet differentiable at v0 ∈ V if there exists a bounded linear functional d∗ such that

lim
‖w‖V →0

|E (v0 + w) − E (v0) − d∗ (w)|
‖w‖V

= 0, (B1)

where ‖ · ‖V is the norm on V, in which case that d∗ is the Fréchet derivative

DF (v0; ·) = d∗, (B2)

(e.g. Luenberger 1969, p. 175). In the particular case where E is given by (43), we have

E (v0 + w) − E (v0) =
T∫

0

dt

∫
�̃

dV
(
ρ0

/
T

)
v0 · W · w +

T∫
0

dt

∫
�̃

dV
(
ρ0

/
T

)
w · W · w. (B3)

Although we have not specified the norm on V, we stipulated in Section 3 that it be such that ‖w‖H ≤ c ‖w‖V for some positive constant
c and all w ∈ V, where ‖w‖2

H is the norm on H. Therefore, the last term on the right-hand side of (B3), because it is bounded by c‖w‖H , for
some c > 0, must also be bounded by c1‖w‖2

V , for some c1 > 0, so the Fréchet derivative of E exists and is given by the first right-hand side
term of (B3).

A P P E N D I X C : PAT H S E N S I T I V I T Y K E R N E L S Kα and Kβ

Setting δĊ = δcuδ(t) in (53) gives (54) and (55), which together are analogous to the modulus perturbation term of eq. (20) of Liu &
Tromp (2006), together with their eq. (22). Then, following those authors, specialize to isotropy (noting that only the symmetric part of ∇v0

contributes to the product) and separate ∇ψd : δcu and the symmetric part of ∇v0 into their respective isotropic and deviatoric parts. The
results are analogous to eqs (25)–(28) of Liu & Tromp,

δcu :: K c = δ ln μu Kμ + δ ln κu Kκ , (C1)

Kκ (x) = −
T∫

0

κu∇ · v0 (x, T − τ ) ∇ · ψd (x, τ ) dτ, (C2a)

Kμ (x) = −
T∫

0

2μuDv0 (x, T − τ ) : Dψd (x, τ ) dτ, (C2b)

where

Dψd
= 1

2
∇ψd + 1

2
(∇ψd )T − 1

3
∇ · ψd , (C3a)

Dv0 = 1

2
∇v0 + 1

2
(∇v0)T − 1

3
∇ · v0. (C3b)

If we express μu and κu in terms of the corresponding P and S wave speeds, α = √
(κu + 4μu/3)/ρ and β = √

μu/ρ, we obtain δcu :: kc

in the alternative form δ ln αKα + δ ln βKβ , with the S and P path kernels given by eqs (31) and (32) of Liu & Tromp,

Kβ = 2

(
Kκ − 4

3

μu

κu
Kκ

)
, (C4a)
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Kα = 2

(
1 + 4

3

μu

κu

)
Kκ . (C4b)

S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online version of this article:

Movie S1. Animation of an elastodynamic simulation of ShakeOut V1.2b, showing the horizontal ground velocity in the N 130◦E-direction
and seismograms at a few selected sites. Note that the colour map saturates at ±0.3 m s−1. The thin black line shows the portion of the
Southern San Andreas fault that ruptured in the scenario.
Movie S2. Animation of adjoint simulation for feature excitation in the Los Angeles basin, showing the horizontal ground velocity in the
N 130◦E-direction and the adjoint horizontal shear stress on the surface of the Southern San Andreas fault. Both colour maps saturate at their
maximum value.
Supplement S1. Zipped Keyhole Markup Language, for use in Google Earth R© and other similar software; we tested this file with Google
Earth v. 6.2. Ground overlays of the path sensitivity kernel and shear-wave velocity maps (Figs 6a–c and 8a–c of the main article) in KMZ
format. The fault segment that ruptured in these scenarios and the spatial windows used for the definition of the excitation functionals are
also included in this file.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any
queries (other than missing material) should be directed to the corresponding author for the article.
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