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Abstract
Ground motion time series recorded at stations separated by up to about 50 km
show a frequency-dependent spatial coherency structure, and the corresponding
ground motion intensity measures are found to be correlated. As omitting this cor-
relation can result in underestimation of seismic losses in risk analysis, it is critical to
quantify the spatial correlation structure for ground motion Fourier spectra esti-
mated at different sites during a single event within a region. Toward this goal, we
have developed an empirical frequency-dependent spatial correlation model for the
within-event residuals of effective Fourier amplitude spectra from the Pacific
Earthquake Engineering Research Center (PEER) Next Generation Attenuation
(NGA) West2 database. The correlation model shows slower decrease of the spatial
correlation with distance at lower frequencies compared with higher frequencies, in
agreement with the underlying ground motion data, and no significant dependence
on the magnitude of the earthquakes is observed. We use this empirical model to
incorporate frequency-dependent spatial correlation into a hybrid deterministic-
stochastic broadband ground motion generation module, which successfully gener-
ates synthetic time series for seven western US earthquakes with frequency-
dependent spatial correlation that closely mimics that of the empirical model.
Furthermore, the method also significantly improves the correlation for spectral
accelerations, cumulative absolute velocities, and Arias intensities, compared with
that derived from the original broadband module.
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Introduction

Ground motion time series recorded from earthquakes reveal a spatial coherency structure
at stations separated by up to a few tens of kilometers, causing intensity measures such as
peak ground velocities, peak ground accelerations, and peak spectral accelerations (i.e.
response spectra) to be correlated (e.g. Abrahamson et al., 1991; Bolt et al., 1982; Bycroft,
1980; Der Kiureghian, 1996; Hao et al., 1989; Harichandran and Vanmarcke, 1986). A
number of studies have been carried out over the past decades addressing the spatial corre-
lation of ground motions (e.g. Boore et al., 2003; Esposito and Iervolino, 2011; Goda and
Hong, 2008; Heresi and Miranda, 2019; Jayaram and Baker, 2009; Kawakami and Mogi,
2003; Loth and Baker, 2013; Markhvida et al., 2018; Sokolov et al., 2012; Wang and
Takada, 2005; Wesson and Perkins, 2001). In general, these previous studies have investi-
gated correlations between spectral accelerations for a range of periods, using earthquake
records from different locations.

Seismic loss estimation in a region with exposed infrastructure is used by earthquake
insurance companies to estimate expected damage in future catastrophes. The accuracy of
the insured loss estimates in a region is critically dependent on the spatial correlation
between the ground motion intensities at different sites during a single event, which can be
significant at distances up to 50 km (e.g. Abrahamson et al., 1991; Bolt et al., 1982;
Bycroft, 1980; Der Kiureghian, 1996; Hao et al., 1989; Harichandran and Vanmarcke,
1986). Strong motion data naturally include such correlation, but is often available in
insufficient amounts for loss analysis, in particular for large events and close to the causa-
tive fault. Instead, numerical simulations can provide key information for seismic hazard
analysis. Seismic hazard assessment has benefited from recent advances in simulation
methods due to improved source characterization, accuracy of numerical methods, and
availability of powerful computational resources. However, while ground motion simula-
tions produced from complex 3D rupture and crustal models may include realistic spatial
correlation structure (e.g. Withers et al., 2019), those obtained by more simplified determi-
nistic simulations (e.g. 1D) and, in particular, by stochastic approaches (e.g. Atkinson
et al., 2009; Beresnev and Atkinson, 1997; Boore, 2003, 2009; Motazedian and Atkinson,
2005), oftentimes do not. For example, many broadband simulation methods (e.g.
Atkinson and Assatourians, 2015; Crempien and Archuleta, 2015; Graves and Pitarka,
2015; Olsen and Takedatsu, 2015), which have been tuned to produce good agreement
with median spectral acceleration from strong motion data, have received less attention to
their spatial correlation behavior. The importance of including spatial correlation in
ground motion simulations has been illustrated by many studies (e.g. Jayaram and Baker,
2010; Miller and Baker, 2015) for loss estimates, clearly showing that simulations without
spatial correlation can result in an underestimation of seismic risk.

Pseudo-spectral acceleration (PSA) has traditionally been the preferred metric in earth-
quake engineering, and many studies have proposed spatial correlation models for PSA.
However, each PSA ordinate depends (nonlinearly) on ground motion amplitudes over a
range of frequencies, and therefore a correlation model for PSA does not provide a direct
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means to impose the correlation structure on numerically simulated time histories (or on
other ground-motion metrics derived therefrom). On the contrary, the Fourier amplitude
spectrum (FAS) provides a straightforward means to incorporate an empirical correlation
model into simulated ground motion time histories, through frequency-domain multiplica-
tion, but its empirical estimation is complicated by the fact that its value depends upon
recording-instrument orientation. The effective amplitude spectrum (EAS), defined in the
next section, avoids this complication, and bears a simple relationship to the FAS.
Therefore, the aim of this study is to (1) develop a new, empirical frequency-dependent
spatial correlation model of EAS and (2) describe and demonstrate its implementation
into numerically simulated ground motion. In that implementation, the empirical EAS
correlation model is used to generate separate but correlated FAS adjustments to the two
horizontal components at a given site. Specifically, we use the findings for inter-frequency
correlation by Wang et al. (2019) to generate correlated horizontal-component FAS resi-
duals with correlation coefficient 0.7.

Within-event residual of the EAS

FAS, the amplitude spectrum of Fourier transform of the acceleration time series, depends
on the recording instrument’s orientation. Such dependency may cause an undesirable bias
in applications of the calculated FAS values. On the contrary, the EAS defined by Goulet
et al. (2018) as follows:

EAS(f ) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

FAS2
HC1(f ) + FAS2

HC2(f )
� �q

ð1Þ

is rotation independent, and will therefore be used as the intensity measure for our empiri-
cal model development. As discussed later, we then use the EAS correlation model, with
the method of Wang et al. (2019), to generate FAS adjustments to simulated time his-
tories. In Equation 1, FASHC1 and FASHC2 are the FAS of two orthogonal as-recorded hor-
izontal components acceleration time series, and f is the frequency in Hertz. The EAS is
smoothed by the log10-scale Konno and Ohmachi (1998) smoothing window (e.g. Kottke
et al., 2018):

W (f ) = sin b log f =fcð Þð Þ
b log f =fcð Þ

� �4
: ð2Þ

Here, W is a weight at frequency f designed for a window with center frequency fc, and
b = 2p

bw
= 60p, where bw is the smoothing window bandwidth in log10 units (see Kottke

et al., 2018, for more details on the smoothing technique). Note that the smoothing of the
EAS can have a direct impact on the correlation. A comparison of the models of Stafford
(2017) and Bayless and Abrahamson (2019) indicates that it is possible that smoothing
contributes to larger inter-frequency correlations. PEER NGA-East (Pacific Earthquake
Engineering Research Center (PEER), 2015) selected the Konno and Ohmachi (1998) type
of smoothing window which leads to minimal bias on the amplitudes of the smoothed
EAS compared with the unsmoothed EAS. The parameter b (188.5 in our study) was
selected such that the random vibration theory (RVT) calibration properties after the
smoothing were minimally affected (Kottke et al., 2018). Using the smoothed EAS with
the same b, we maintain consistency with the PEER database as well as with other PEER
projects, including the NGA-East empirical FAS models (Goulet et al., 2018) and the
Bayless and Abrahamson (2018a) EAS model.
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Following the notation by Al Atik et al. (2010) we define yes as the natural logarithm of
the ground-motion intensity measure observed at station s during earthquake e as follows:

yes = mes + dBe + dWes ð3Þ

where mes is the mean prediction of the natural logarithm of the intensity measure, dBe is
the between-event (or inter-event) residual representing the average shift of the observed
ground motion for an individual earthquake e from the population mean prediction, and
dWes is the within-event residual (or intra-event residual), depicting the misfit between an
individual observation at station s from the earthquake-specific mean prediction. The
between-event residual includes average source effects (over all azimuths) such as stress
drop and spatial and temporal variation of fault slip that are not captured by magnitude,
faulting style, and source depth in the mean prediction. The within-event residual com-
prises azimuthal variations in source, path, and site effects that reflect the influence of fac-
tors such as crustal heterogeneity, deeper geological structure, and near-surface layering
that cannot be captured by a simple distance metric and a site-classification based on the
average shear-wave velocity (Al Atik et al., 2010). These residuals are normally distributed
with zero mean and are uncorrelated with each other. Following these definitions, the nor-
malized EAS within-event residual, e, at station s during earthquake e is calculated as a
function of frequency f as follows:

e(f ) =
dWes(f )

u(f )
=
lnEASes(f )� mlnEASes

(f )� dBe

u(f )
, ð4Þ

where u is the standard deviation of dWes, and e is standard normally distributed.

Semivariogram analysis

A semivariogram (g) characterizes the strength of statistical dissimilarity as a function of
distance and is often used to describe spatially distributed random variables in geostatis-
tics (see Appendix 1 for a summary of semivariograms). Under the stationary and isotro-
pic assumptions, the semivariograms are independent of the locations and offset direction
of the site pair but depend on the distance between the sites. The empirical semivariogram
matrix for e at each frequency pair fi, fj

� �
can be summarized by an isotropic semivario-

gram matrix (G) as a function of separation distance h:

G(h) = gfi, fj
(h) =

gf1, f1
(h) � � � gf1, fn

(h)

..

. . .
. ..

.

gfn, f1
(h) � � � gfn, fn

(h)

2
64

3
75 , ð5Þ

where matrix element gfi, fj
is as defined, in terms of e, by Equation 25 in Appendix 1.

Similarly, the empirical isotropic covariance matrix (C) can be written as a function of
separation distance h as follows:

C(h) = cfi, fj (h) =

cf1, f1 (h) � � � cf1, fn (h)

..

. . .
. ..

.

cfn, f1 (h) � � � cfn, fn (h)

2
64

3
75 , ð6Þ
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and we have

C(h) = C(0)� G(h) : ð7Þ

Empirical frequency-dependent spatial correlation model of within-
event residuals

Data sources

In this study, the frequency-dependent spatial correlation model is developed from EAS
values for recorded ground motions in the PEER NGA West2 database (Ancheta et al.,
2014). The NGA-West2 database includes shallow crustal earthquakes with M . 3 in
active tectonic regions (dominated by California and Nevada earthquakes). The normal-
ized within-event EAS residual, e, was determined from the Bayless and Abrahamson
(2018a) ground motion model. This model was calculated from the individual EAS values
and the earthquake-specific smoothed EAS median value at each station for each recorded
event. The within-event residuals used in this study are obtained from Bayless and
Abrahamson (2018a). For more details on the ground-motion database and data selection
criteria, see Bayless and Abrahamson (2018a) and Abrahamson et al. (2014).

Semivariograms gfi, fj
of e were calculated for each pair of frequencies, fi and fj (at fre-

quency points 0.1–1 Hz with a spacing of 0.1 Hz, and 1–23 Hz with a spacing of 1 Hz) and
as a function of h from 0 to 120 km with a bin size equal to 2 km. Figure 1 shows an exam-
ple of the semivariogram produced for the frequency pair f1 = f2 = 1 Hz computed from the
data.

Linear model of coregionalization

Previous studies (e.g. Wang and Takada, 2005) have observed an exponential decay of the
ground motion spatial correlation, suggesting that the semivariogram can be well fit using
an exponential model. For this reason, we assume a functional form of the semivariogram
with the general behavior:

Figure 1. Semivariogram as a function of h at the frequency pair f1 = f2 = 1 Hz computed from the
dataset.
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g(h) = S 1� exp � 3h
R

� �� �
, ð8Þ

where S is the sill that represents the asymptotic value of g(h) as h goes to infinity, and R is
the range that represents the distance at which the value of g(h) equals 95% of the sill. In
the multivariate case (as in Equation 25 in Appendix 1), this general behavior would imply
a semivariogram at a given frequency pair fi and fj of the form:

gij(h) = Sij 1� exp � 3h
Rij

� �h i
: ð9Þ

However, it has been shown that (for within-event residuals of spectral accelerations) Rij

varies at different frequencies such that lower frequencies tend to have larger ranges than
do higher frequencies (Loth and Baker, 2013). To better represent these frequency depen-
dencies, we followed an approach similar to that of Loth and Baker (2013), using a nested
semivariogram model (a linear combination of single semivariogram models):

gij(h) = P1
ij 1� exp � 3h

R1

	 
	 

+ P2

ij 1� exp � 3h

R2

	 
	 

+ P3

ij: ð10Þ

Combining all elements gij, we obtain the linear model of coregionalization:

G(h) =P1 1� exp � 3h

R1

	 
	 

+P2 1� exp � 3h

R2

	 
	 

+P3, ð11Þ

where P1 and P2 are coregionalization matrices corresponding to the short-range and long-
range models, respectively. Note that the third term, the coregionalization matrix P3 in
Equation 11 corresponds to the nugget effect as follows:

g(h) =
0 if h = 0

S if h.0

�
, ð12Þ

which can be used to represent discontinuity of the semivariogram at separation distances
larger than zero. Ranges R1 = 10km and R2 = 100km provide a reasonable fit to the data
and are adopted in our model. The coregionalization matrices, P1, P2 and P3, which are
symmetric and semipositive definite, are estimated from the empirical semivariogram data
by the procedure given in the next section.

Empirical frequency-dependent spatial correlation model for covariance

We use the Goulard–Voltz algorithm (Goulard and Voltz, 1992) to develop our frequency-
dependent spatial correlation model for covariance. The iterative algorithm, commonly
used to fit a linear model of coregionalization with semipositive definite coregionalization
matrices, uses a least square fitting technique to find the coregionalization matrices that
minimize the weighted sum of squares as follows:

WSS =
PK
k = 1

vkkĜ hkð Þ � G hkð Þk2 =
PK
k = 1

vk

PN
i, j = 1

ĝij hkð Þ � gij hkð Þ
� �2

, ð13Þ

6 Earthquake Spectra 00(0)



where Ĝ hkð Þ and ĝij hkð Þ represent the semivariogram values computed from the model, and
G hkð Þ or gij hkð Þ represent the semivariogram values computed from the empirical data at hk ,
the center of the kth bin. vk is a positive weight at hk , which is defined as vk = 1

hk
in this study.

Let us denote 1� exp � 3h
R1

� �� �
by g1(h), 1� exp � 3h

R2

� �� �
by g2(h) and 1 by g3(h).

Equation 11 can then be written as follows:

G(h) =
PL
l = 1

Plgl(h), L = 3 : ð14Þ

The Goulard–Voltz algorithm is now executed using the following steps:

1. Initialize the coregionalization matrices Pl, l = 1, 2, 3 in this study.
2. Iterate from (a) to (c):

(a) Compute WSS with the current coregionalization matrices.
(b) For each l:

(b1) Compute the new coregionalization matrix ~P
l
as follows:

~P
l
=

PK

k = 1
vk gl hkð Þ Ĝ hkð Þ�

PL

u = 1, u 6¼l
Pugu hkð Þ

h i
PK

k = 1
vk ½gl hkð Þ�2

ð15Þ

(b2) Decompose ~P
l
as ~P

l
=QlLlQ

T
l where QlQ

T
l is an identity matrix and Ll is

a diagonal matrix.
(b3) Change all the negative diagonal elements of Ll to zero to obtain L+

l (this
step is applied for ensuring semipositive definiteness of each coregionali-
zation matrix).

(b4) Update ~P
l
as a semipositive definite matrix ~P

l
=QlL

+
l Q

T
l .

(c) Compute WSS with the updated coregionalization matrices and loop over (a) to
(c) until the difference of the WSS value from (a) and (c) is smaller than a posi-
tive prespecified value.

The empirical semivariogram and the estimated multivariate semivariogram model are
shown in Figure 2, for example frequency pairs. Noting that

C(0) = lim
h!+ ‘

G(h) =P1 +P2 +P3
, ð16Þ

the correlation matrix in Equation 6 can be derived from Equation 7 as

C(h) =P1 exp � 3h
R1

� �
+P2 exp � 3h

R2

� �
+P3I h = 0f g ð17Þ

where

I h = 0f g =
1 h = 0

0 h 6¼ 0

�
ð18Þ

is the indicator function.
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The resulting coregionalization matrices with each element corresponding to a pair of
32 frequency points 0.1–1 Hz with a spacing of 0.1 Hz and 1–23 Hz with a spacing of 1 Hz
are provided in the Supplemental material of this article. Note that the coregionalization
matrices after computation from the Goulard–Voltz algorithm are normalized as follows:

Pl
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P1
ii

+ P2
ii

+ P3
ii

p
+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1

jj
+ P2

jj
+ P3

jj

p : ð19Þ

The correlation coefficient model is shown in Figure 3, for example frequency pairs.
Figure 4 shows the separation distances where the correlation coefficient of frequency
pairs with two identical frequencies drop to 0.5. It can be seen that, as expected, the corre-
lation at lower frequencies (\0.4 Hz) persists to larger separation distances, compared
with higher frequencies. This is expected, as lower frequency signals are less affected by
smaller-scale crustal features (e.g. topographic relief, velocity perturbations) that tend to
control the variation of more high-frequency (HF) motion. The small increase (about
2 km) in the separation distances at frequencies larger than 4 Hz in Figure 4 is discussed
in the ‘‘Discussion’’ section.

Note that when h = 0 in Equation 17, the correlation model becomes C(0) =P1 +P2 +P3,
which represents the inter-frequency correlation at a single site. Hence, the presented
frequency-dependent spatial correlation model also includes the inter-frequency correlation
simultaneously. A comparison of the regressed within-event inter-frequency correlation
model with the empirical within-event inter-frequency correlation from Bayless and
Abrahamson (2019) is shown in Figure 5. The presented model compares well with the
empirical inter-frequency correlation, especially at higher correlation values.

Inclusion of frequency-dependent spatial correlation into ground
motion simulation

We demonstrate and validate our spatial correlation approach on the San Diego State
University Broadband Ground Motion Generation Module (hereafter the ‘‘SDSU

Figure 4. Separation distances where the correlation coefficient drops to 0.5 using pairs of two
identical frequencies.
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Module’’) (Mai et al., 2010; Mena et al., 2010; Olsen and Takedatsu, 2015). The SDSU
Module is a hybrid method merging deterministic low-frequency (LF) synthetics and HF
stochastic contributions designated as scatterograms. The SDSU Module is implemented
on the Southern California Earthquake Center (SCEC) Broadband Platform (BBP), using
a number of source realizations (e.g. 50) from the Graves and Pitarka (2015) kinematic
source generator to generate the LFs. The HF scatterograms are simulated for each com-
ponent of ground motion based on the multiple scattering theory by Zeng et al. (1991,
1993). The seismic-scattering wave energy appears after the direct P-wave arrival time, cal-
culated using 3D ray tracing (Hole, 1992). The scatterograms are then convolved with an
appropriately magnitude-scaled source time function, assuming that the scattering opera-
tors and moment release originate throughout the fault, starting at the hypocenter (Olsen
and Takedatsu, 2015).

The SDSU Module passed the SCEC BBP validation exercise (Dreger et al., 2015;
Goulet et al., 2015), which assessed ground motion simulations on the basis of their med-
ian pseudo-spectral acceleration (PSA) predictions for a specified set of earthquakes in
western and eastern United States and Japan, as well as on their degree of agreement with
median estimates from the NGA Ground Motion Prediction Equations (GMPEs). Thus,
the method has undergone thorough calibration for PSA using GMPEs and strong motion
data. However, this validation exercise did not extend to validation of prediction variabil-
ity measures, and the current SDSUModule (i.e. current as of the above-referenced valida-
tion exercise) does not generate time history sets with significant spatial correlation. For
example, Figure 6 (top) shows the resulting spatial correlation coefficients for the Loma

Figure 5. Comparison of the within-event inter-frequency correlation model after setting h = 0 in
Equation 17 (solid lines) and the Bayless and Abrahamson (2019) empirical within-event inter-frequency
correlation coefficients (dashed lines), at reference frequencies 0.2, 0.5, 2, 5, and 10 Hz.
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Prieta earthquake using the current SDSU Module synthetics compared with the correla-
tion model presented here (Equation 17). It is clear that the spatial correlation coefficients
of e are significantly lower than the empirical model value for station separation distances
larger than 1km. In the following, we implement a post-processing procedure for introdu-
cing spatial correlation in SDSUModule synthetic time histories, and show that the results
match our specified empirical EAS correlation model.

Our implementation approach for the frequency-dependent spatial correlation is an
extension of that developed by Wang et al. (2019) for incorporating inter-frequency corre-
lation. The spatial correlation model in Equation 17 is developed for the within-event resi-
dual of the orientation-independent EAS, while the SDSU Module simulations generate
separate components of ground motion. For this reason, we apply the EAS frequency-
dependent spatial correlation model to the FAS of each of the two horizontal components
generated by the method. The resulting synthetic time histories are then found to include
correlations in agreement with the EAS correlation model, provided the FAS adjustments
made to the two individual horizontal components at each station are suitably correlated.
We use a correlation coefficient of 0.7 for the two FAS component adjustments at the same
station, a value recommended by Wang et al. (2019) from their study on inter-frequency
correlation. The procedure is described in detail in Appendix 2.

We illustrate our method using 50 source realizations for the Loma Prieta earthquake
obtained by the kinematic source generator module by Graves and Pitarka (2015). These
50 source realizations have variations in hypocenter locations and slip distributions that
are represented by the between-event residual. Here, we refer to each of the 50 source reali-
zations as a separate event. For each event, we generate ten simulations with imposed
within-event frequency-dependent spatial correlation at all the stations. The ten simula-
tions differ by the random variables (RHC1 and RHC2) in Step (2) in Appendix 2. The mean
of the ten simulations and their within-event residuals are computed for each event, respec-
tively. The within-event residual of all the 50 events are then pooled together at the

Figure 6. Comparison of the spatial correlation coefficients of e for EAS at the reference frequency
pairs f1 = f2 = 0:2Hz (left), f1 = f2 = 1Hz (middle), and f1 = f2 = 5Hz (right) from the proposed model (red
lines) and the SDSU Module before (top) and after (bottom) applying our method (dots) for the Loma
Prieta earthquake with 50 source realizations.

12 Earthquake Spectra 00(0)



corresponding frequencies and stations. Note that, at each station and each frequency, the
sampled e of within-event residual has a length of 500 (50 events by ten simulations). A
total of 40 stations are used for the Loma Prieta earthquake in our simulations.

Figure 6 (bottom) shows the spatial correlation coefficients of EAS from 50 source reali-
zations of the Loma Prieta earthquake generated from the SDSU Module with the imple-
mentation of our spatial correlation method, at example frequency pairs. In contrast to the
low interstation correlation obtained from the current version of the module, the correla-
tion implementation step results in correlation of the synthetics that very closely follows
the empirical model, with significant correlation persisting to distances of 350 km. Figure
7 shows the inter-frequency correlation coefficients of EAS from 50 source realizations of
the Loma Prieta earthquake generated from the SDSU Module with the implementation
of our frequency-dependent spatial correlation model, at 5 reference frequencies. This veri-
fies that the presented frequency-dependent spatial correlation model can address both the
spatial correlation and the inter-frequency correlation simultaneously.

Figure 8 shows one example component of synthetic time histories of acceleration and
FAS at a station (8001-CLS) for the Loma Prieta earthquake before and after implement-
ing the proposed spatial correlation model. The ‘‘uncorrelated’’ case here in Figure 8 is
computed when the off-diagonal correlation terms of the correlation matrixes (Step (5) in
Appendix 2) are being set to zero. The comparison shows that the resulting correlation
has subtle effects on the time domain. Similar comparisons at other 39 stations are pro-
vided in Figure S1, available in the Supplemental material of this article. Note that the

Figure 7. Comparison of the inter-frequency correlation resulting from the presented model setting
h = 0 in Equation 17 (solid lines) and the correlation coefficients of e for EAS from the SDSU Module
after applying our method to the Loma Prieta earthquake with 50 source realizations (dots) at reference
frequencies 0.2, 0.5, 2, 5, and 10 Hz.

Wang et al. 13
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FAS correlation adjustment, which is done with an assumption of zero phase adjustment
(as is also the case for the inter-frequency correlation analysis, for example, Bayless and
Abrahamson, 2018b; Stafford, 2017; Wang et al., 2019), does not lead to any visibly
anomalous behavior in the time domain, such as non-causality. For this reason, we did
not embrace the additional complexity of doing the FAS adjustments in the form of a cau-
sal filter. The resulting spatial correlation coefficients from six other western U.S. earth-
quakes considered in the SCEC broadband validation exercise (the 1992 M7.2 1992
Landers, the 1994 M6.7 Northridge, the 1986 M6.1 North Palm Springs, the 1987 M5.9
Whittier, the 2008 M5.4 Chino Hills, and the 2007 M5.5 Alum Rock earthquakes) are pro-
vided in Figures S2–S7, available in the Supplemental material of this article.

Comparison with other correlation models

Loth and Baker (2013) regressed a within-event spatial correlation model for spectral
accelerations based on recordings of 8 earthquakes from the PEER NGA database. The
assumptions of stationarity and isotropy are present in both the presented model and the
Loth and Baker (2013) model. While the regression model in Equation 11 has the same
format as the regression model function of Loth and Baker (2013) model, the range para-
meters R1 and R2 are chosen differently than in the Loth and Baker PSA model, to better
fit to the empirical correlation of EAS. Figure 9 shows the resulting cross-correlation

Figure 8. Examples of the north–south component of FAS (left) and acceleration time histories (right)
for one simulation of the Loma Prieta earthquake at station 8001-CLS after (red dashed line) and before
(blue solid line) applying our method to implement the proposed spatial correlation model.

Figure 9. Comparison of the spatial correlation coefficients of e for the spectral accelerations at
reference period pairs (left) T1 = T2 = 0:2s, (middle) T1 = T2 = 1s, and (right) T1 = T2 = 5s from the Loth and
Baker (2013) model (dashed lines) and the SDSU Module after applying our method (dots) to the Loma
Prieta earthquake synthetic seismograms with 50 source realizations.
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coefficients of response spectral accelerations for the Loma Prieta earthquake synthetics
after applying the EAS spatial correlation implementation method, indicating that incor-
porating the empirical spatial correlation into the EAS of ground motion simulations can
also lead to an improvement of the spatial correlation in spectral accelerations. The com-
parison shows that the Loth and Baker (2013) model’s correlation coefficients decay
slightly faster than the simulated correlation coefficients. These differences are likely
caused by a combination of the following factors. (1) The Loth and Baker (2013) model is
regressed for spectral accelerations using a smaller database with 2080 recordings from 8
earthquakes while the present model is regressed from a much larger database with 13,346
recordings from 232 earthquakes. (2) The values of the modeled covariance matrices of
Loth and Baker (2013) are obtained by averaging all the fitted coregionalization matrices
over various earthquakes while the presented model fits the covariance matrices once after
pooling the residuals from all the earthquakes together. (3) The smoothing technique
applied in the EAS dataset, which may have increased the correlation, as described previ-
ously. One other possible cause of these differences is that the simulations use the actual
median as the referencing median to compute the within-event residuals instead of the
median ground motion models of PSA used by Loth and Baker (2013). A direct compari-
son of the two models is provided in Figure S8, available in the Supplemental material of
this article.

Stafford (2017) developed inter-frequency correlation models for FAS. A comparison
of the presented within-event inter-frequency correlation model (h = 0 in Equation 17) with
Stafford’s (2017) within-event inter-frequency correlation model is shown in Figure 10.

Figure 10. Comparison of the within-event inter-frequency correlation model after setting h = 0 in
Equation 17 (solid lines) and Stafford (2017) within-event inter-frequency correlation model (dotted
lines), at reference frequencies 0.2, 0.5, 2, 5, and 10 Hz.
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The within-event inter-frequency correlation of Stafford (2017) shown here is computed as
the combination of their between-site and within-site correlation components. Stafford’s
(2017) correlation model shows lower correlation and faster decay at higher reference fre-
quency than the model developed in this study and the Bayless and Abrahamson (2019)
empirical correlation. These differences are likely caused by a combination of the follow-
ing factors. (1) The different ground motion component used. The use of both as-recorded
FAS horizontal components in Stafford (2017) is a key difference from this study which
uses an orientation-independent horizontal component, EAS. (2) The different database
and median ground motion model used. Stafford (2017) used a subset of the PEER NGA
West1 database to develop the correlation model and used a FAS ground motion model
adapted from Yenier and Atkinson (2015) to compute the residual. (3) The different
smoothing technique applied. Stafford (2017) used unsmoothed FAS and this study uses
smoothed EAS. By averaging the EAS in frequency windows, it is possible that the
smoothing could increase the correlation between adjacent frequencies. In this study, the
smoothed EAS is chosen to maintain consistency with prior studies, as mentioned before.

Discussion

In this study, we regressed the spatial correlation model at 32 frequency points from 0.1 to
23 Hz, which sufficed to illustrate the efficacy of the implementation of the method.
However, if the spatial correlation is needed at additional frequency pairs, a straightfor-
ward two-dimensional interpolation of the coregionalization matrices P1, P2, and P3 can
be applied.

We observe no meaningful event-size dependence of the spatial correlation of earth-
quake ground motion for the magnitude range in our analysis, as shown by Figure 11,
where results are binned by magnitude. Some apparent variation of the spatial correlation
with magnitude for smaller sample partitions from the full database is due to unbalanced
sampling of earthquake magnitude at a particular distance or frequency. This is consistent
with the empirical model of inter-frequency correlation for the EAS residual by Bayless
and Abrahamson (2019) that also showed no statistically significant magnitude
dependence.

As shown in Figure 4, the correlation at lower frequencies (\0.4 Hz) persists to larger
separation distances, compared with higher frequencies, which is expected. Moreover, a
small increase of the separation distances at frequencies larger than 4 Hz (meaning that the
correlation decreases more slowly with distance at higher frequencies) is observed in Figure
4. We also observed such trend at periods smaller than 0.2 s (i.e. frequencies larger than
5 Hz) in the Loth and Baker (2013) model (for spectral accelerations) which is based on
recordings of 8 earthquakes with magnitudes between 6 and 7.6 from the PEER NGA
database as shown in Figure S9. We find that the increase in our EAS correlation model at
frequencies larger than 4 Hz is mostly dominated by the data from earthquakes with mag-
nitudes between 6 to 7, while the trend is not obvious for other magnitudes (M3-6 and M7-
8), as shown in Figure S10. This result warrants further investigation of the data screening
procedure or the median ground motion models (used as reference to calculate the resi-
duals). In any case, the trend is relatively small (separation distances increased by 32 km
from 4 to 23 Hz when the correlation coefficient equals 0.5), and further decreases as the
correlation coefficient increases until no noticeable increase is observed when the correla-
tion coefficient equals 0.7, as shown in Figure S11. Thus, the trend does not affect our
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overall result that the empirical correlation at lower frequencies persists to larger separa-
tion distances. Figures S9–S11 are available in the Supplemental material of this article.

In our analysis, we use a linear coregionalization model to generate our spatial correla-
tion model because of its efficiency using the Goulard-Voltz algorithm, its applicability to
a broad frequency range, and its simplicity in the implementation approach. However,
other models or regression methods such as the Markov-type screening hypothesis model
(Goda and Hong, 2008) and the principal components semivariogram model (Markhvida
et al., 2018) may also provide adequate implementation support for the frequency-
dependent spatial correlation model.

We have applied the spatial correlation technique to the SDSU Module, which (other-
wise) produces broadband synthetic time series with little spatial correlation for either low-
frequency deterministic or high-frequency stochastic components. For this reason, the
empirical spatial correlation matrices were applied directly to the broadband synthetics as
a post-processing procedure. If the method is applied to synthetic time histories from other
ground motion generation methods (such as the ones using 3D rupture and crustal models)
that already include a certain level of inherent spatial correlation, the procedure should be
adjusted to avoid possible double counting. An example of such adjustment is to generate
spatially correlated residuals in the process such that the SRSS (square root of the sum of
the squares), which consists of the residuals’ spatial covariance as well as the inherent spa-
tial covariance, becomes the desired total value that matches the empirical spatial correla-
tion model developed in this study.

The fact that the SDSU Module correlation implementation allows the correlated syn-
thetics to essentially replicate the empirical correlation for PSA suggests that one could
now use the correlated SDSU Module synthetics (with the present EAS correlation model
implemented) to generate any other ground motion metrics with a valid ‘‘empirical’’ corre-
lation, such as Arias intensity and Cumulative Absolute Velocity. Figure 12, as an exam-
ple, shows the improved spatial cross-correlation coefficients of cumulative absolute
velocity and Arias intensity (combining two orthogonal horizontal components using the
arithmetic mean, Travasarou et al., 2003) for the Loma Prieta earthquake synthetics after
applying the spatial correlation implementation method. This also suggests that the corre-
lated SDSU Module synthetics may provide a means for deriving correlation models for
other ground motion metrics. However, further study addressing the spatial variation in
the duration of ground motion might be needed to justify such a procedure.

Figure 12. Spatial correlation coefficients of e for the cumulative absolute velocity (left) and Arias
intensity (right) from the SDSU Module before (hollow dots) and after (solid dots) applying our method
to the Loma Prieta earthquake synthetic seismograms with 50 source realizations.
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Bayless and Abrahamson (2018a) used a mixed-effect regression in their EAS dataset
(as used in our analysis). This regression should include a mean bias term in Equation 3
(e.g. Afshari and Stewart, 2016; Lee et al., 2020). Omission of this mean bias term could
cause the within-event (and the between-event) residuals to be altered and lead to a net
increase in the estimated spatial correlations. However, we checked that the overall mean
bias is negligible in our analysis, justifying leaving out the bias term.

Conclusion

We have developed a frequency-dependent spatial correlation model of e (the normalized
within-event residual) of EAS from the PEER NGA-West2 database, in order to mimic
the spatial correlation of observed ground motion data between stations, critical for appli-
cations such as seismic risk analysis. The spatial correlation coefficients at lower frequen-
cies decrease more slowly with distance than those at higher frequencies, with no
significant dependence on the magnitude of the earthquakes observed. The empirical spa-
tial correlation model of e is regressed for a linear coregionalization model of semivario-
grams using the Goulard-Voltz algorithm. We implement the frequency-dependent spatial
correlation into ground motion simulations via the SDSU Module on the SCEC BBP.
Our method makes use of a two-dimensional Gaussian random variable that has a corre-
lation matrix corresponding to the developed spatial cross-correlation model. The EAS
correlation calculated from sets of spatially distributed, two-component synthetic seismo-
grams using our method closely match the empirical EAS correlation model, and the cor-
relation in spectral accelerations from these seismograms is also significantly improved.
Because the correlated synthetics successfully replicate empirically derived correlations of
spectral acceleration, we suggest that the correlated synthetics from our model could also
provide an efficient means for deriving spatially correlated models for other ground
motion metrics.
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Appendix 1

Multivariate semivariogram and covariance

A semivariogram characterizes the strength of statistical dissimilarity as a function of dis-
tance and is often used to describe spatially distributed random variables in geostatistics.
The semivariogram is defined as follows:

g sx, sy

� �
= 1

2
E Z sxð Þ � Z sy

� �� �2
h i

, ð20Þ
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where E½ � denotes the expectation, Z sxð Þ and Z sy

� �
are random variables at site location

sx and sy, respectively, and g sx, sy

� �
is the value of the semivariogram for Z sxð Þ and Z sy

� �
.

The covariance of two random variables Z sxð Þ and Z sy

� �
is defined as follows:

c sx, sy

� �
= cov sx, sy

� �
= E Z sxð Þ � E Z sxð Þ½ �ð Þ Z sy

� �
� E Z sy

� �� �� �� �
: ð21Þ

When empirically estimating the semivariogram or covariance of ground motion obser-
vations, the stationary and isotropic assumptions usually need to be established due to the
absence of enough data to constrain the additional parameters resulting from a non-
stationary and non-isotropic model. Under the stationary and isotropic assumptions, the
semivariogram and covariance are independent of the locations and offset direction of the
site pair but depend on the distance between the sites. Denoting the separation distance as
h, we can write the semivariogram as follows:

g(h) = 1
2

E Z sxð Þ � Z sx + hð Þð Þ2
h i

ð22Þ

and the covariance as follows:

c(h) = E Z sxð Þ � E Z sxð Þ½ �ð Þ Z sx + hð Þ � E Z sx + hð Þ½ �ð Þ½ � : ð23Þ

Here, note that E Z sxð Þ½ �=E Z sx + hð Þ½ � under the assumption of stationarity, are constant at
all sites. The relationship between g(h) and c(h) is given as

c(h) = c(0)� g(h) : ð24Þ

For a given set of ground motion observations, the values of e at nearby stations are corre-
lated and the similarity decreases as the separation distance increases. It can also be shown
that e at neighboring frequencies (f ) are probabilistically correlated and are weakly corre-
lated if the frequency pair are widely separated (Bayless and Abrahamson, 2018a). To cal-
culate the semivariogram of e at multiple frequency pairs, a multivariate semivariogram is
used in this study. Denoting Zi = e fið Þ and Zj = e fj

� �
, we can write the multivariate semivar-

iogram for frequency pair fi, fj

� �
as follows:

gij(h) = 1
2

E Zi sxð Þ � Zi sx + hð Þð Þ Zj sxð Þ � Zj sx + hð Þ
� �� �

, ð25Þ

where Zi sxð Þ represents the e at station sx at frequency fi. gij can then be estimated using the
following:

gij(h) = 1
2Nij, h

PNij, h

k = 1

Zi sk, xð Þ � Zi sk, x + hð Þð Þ Zj sk, xð Þ � Zj sk, x + hð Þ
� �� �

, ð26Þ

where Nij, h represents the total number of observations of e at the frequency pair fi, fj

� �
with a separation distance h.

Appendix 2

Here, we describe the implementation approach of our frequency-dependent spatial corre-
lation into the SDSU Module. The current implementation is focused on only two hori-
zontal components; however, this approach generalizes to the vertical component (once
the vertical component correlation is defined). The steps are as follows:
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1. Take the Fourier transform of the two horizontal components of the synthetic
ground motion time series at all stations, and let the station number be m. For each
component, let the number of frequency points be n, the Fourier amplitude and
phase at the ith frequency be Ampmean(i) and Phmean(i), respectively;

2. For the two horizontal components 1 and 2, sample normally distributed vector-
valued random variables RHC1 and RHC2, respectively, with zero mean, constant
standard deviation, s (0:5 for the Loma Prieta event, which is consistent with the
original BBP value), and size n at all stations. Rc

HC1 and Rc
HC2 are correlated with a

correlation coefficient rR = 0:7 (Wang et al., 2019), and can be generated by the fol-
lowing steps:
(a) Express covariance matrix C of the two components:

C =
1 rR

rR 1

� 
=

1 0:7
0:7 1

� 
; ð27Þ

(b) Apply the Cholesky decomposition of covariance matrix C and obtain a 2-by-
2 upper triangular matrix U as:

C = U T U ; ð28Þ

(c) Right multiply matrix RHC1, RHC2½ � by U so that the resulting two new random
variables Rc

HC1 and Rc
HC2 have correlation coefficient rR equal to 0:7:

Rc
HC1, Rc

HC2

� �
= RHC1, RHC2½ �U , ð29Þ

where Rc
HC1, Rc

HC2

� �
and RHC1, RHC2½ � are n-by-2 matrices with Rc

HC1 or RHC1 as the
first columns and Rc

HC2 or RHC2 as the second columns, respectively. Only the upper
triangular matrix featuring the correlation between the two columns of the matrix
Rc

HC1, Rc
HC2

� �
is used here (Wang et al., 2019).

3. Repeat step (2) three times to generate three sets of independent standard normal
random variables R1c

HC1, R1c
HC2

� �
, R2c

HC1, R2c
HC2

� �
, R3c

HC1, R3c
HC2

� �
. For each component,

obtain three independent sets of n-by-m random variables Rs1
HC1, Rs2

HC1 or Rs3
HC1 by

combining the vector R1c
HC1, R2c

HC1 or R3c
HC1 for the first component at all the stations.

Similarly, obtain Rs1
HC2, Rs2

HC2 and Rs3
HC2 for the second component.

The following steps are then the same for the two components, so the ‘‘HC1’’ and
‘‘HC2’’ subscripts are dropped for notational brevity and Rs1, Rs2, Rs3 refer to either of
the two components of the three n by m random variables, if not specified.

4. Calculate m by m matrices D1 and D2 with each element representing the cross-

correlation at different station pairs Sx, Sy

� �
, that correspond to the coregionaliza-

tion model factors exp � 3h
R1

� �
and exp � 3h

R2

� �
in model C(h):
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Dl
xy = exp � 3hxy

Rl

� �
, l = 1, 2 ; ð30Þ

5. Apply the Cholesky decomposition to P1, P2, P3 to get lower triangular matrices
K1, K2, K3, and to D1, D2 to get upper triangular matrices L1, L2:

P1 =K1 K1
� �T

,P2 =K2 K2
� �T

,P3 =K3 K3
� �T , ð31Þ

and

D1 = L1
� �T

L1,D2 = L2
� �T

L2 : ð32Þ

6. Compute

S = S1 + S2 + S3 =K1Rs1L1 +K2Rs2L2 +K3Rs3 , ð33Þ

such that S is a matrix of random variables with rows corresponding to different
frequencies and columns corresponding to different stations, and S following the
correlation model C(h). Note that, here, for the corresponding frequency points
outside the 0.1–23 Hz range, S = Rs1 + Rs2 + Rs3ð Þ=3;

7. For all the stations, take the exponential of the corresponding column of S Scol
� �

,
and multiply exp Scol

� �
with the station’s Ampmean to compute the Fourier amplitude

of the new ground motion synthetics, Ampnew, as

Ampnew(i) = Ampmean(i) exp Scol
i ; ð34Þ

8. Calculate the new ground-motion time series by applying the inverse Fourier trans-
form to the amplitude spectrum obtained in (5) and phase spectrum from (1).
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