
1. Introduction
On 4 July 2019, a M 6.4 earthquake occurred just northeast of the city of Ridgecrest, California, followed by a 
M 7.1 earthquake nearly 34 hr later on 6 July 2019 (Ross et al., 2019). The Ridgecrest sequence occurred within 
the Airport Lake and Little Lake Fault zones (Hernandez & Dawson, 2019) in the Eastern California Shear Zone 
(ECSZ), which accommodates 20%–25% of the Pacific-North America plate motion (Liu et al., 2010). The ECSZ 
has a long history of earthquake activity, featuring multiple seismic sequences with mainshock magnitude greater 
than 5 between 1982 and 1996 (Ross et al., 2019). The M 7.1 Ridgecrest earthquake was the largest earthquake 
to occur in ECSZ and southern California since the 1999 M 7.1 Hector Mine earthquake (Cochran et al., 2020).

Conventional 3D and machine learning-based 2D surface wave tomography are used to obtain a data-driven ve-
locity model which helps illuminate the extent of the fault zone damage. Geological mapping studies (e.g., Hough 
et al., 2020) find extensive distributed faulting in a zone several kilometers wide around the 2019 Ridgecrest rup-
tures. While, the depth extent is unknown, we assume that this documented off-fault deformation in Ridgecrest is 
the surface expression of underlying fault damage characterized by a low-velocity zone (LVZ).

Accurate assessment of such fault zone damage is important for many applications, including earthquake location 
and seismic hazard analysis. For example, impedance effects and trapped waves in fault zones can cause ground 
motion amplification (e.g., Li & Leary, 1990; Parker et al., 2020), and rupture dynamics simulations suggest 
fault zones can affect the rupture pulse (e.g., Harris & Day, 1997) and cause super-shear rupture (e.g., Gabriel 
et al., 2012). Furthermore, nonlinear rheology in the fault zone may affect the rise time and shape of the rupture 
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pulse (Ben-Zion & Huang, 2002). Thus, accurate delineation of fault zone structure may improve seismic hazard 
analysis and fault plane delineation.

Fault damage zones are characterized by their depth-dependent width and velocity reduction relative to the sur-
rounding material. Their dimensions and velocity reduction are estimated from the damage zone's effect on 
seismic wave propagation. For example, Li et al.  (1990); Li and Vidale  (1996); Li et al.  (2004) used trapped 
waves from explosions and earthquakes to delineate the San Andreas fault zone. Tomographic inversion using 
earthquake arrival times can characterize velocity structure around mapped faults, such as the San Jacinto fault 
(Allam et al., 2014). In addition, fault zone imaging has used body wave travel times from local and teleseismic 
earthquakes (Yang et al., 2020), waveform modeling of trapped waves and body waves (Qin et al., 2018), and 
modeling diffracted S-waves around the LVZs (Y. Wang et al., 2019). However, while providing important con-
straints on the fault zone parameters, these methods generate poor resolution in the top 1–2 km due to predomi-
nantly deeper ray paths.

In this study we perform ambient noise tomography (ANT) of the Ridgecrest region. Ambient noise is a reliable 
tool for seismic imaging of Earth's crust, due to the abundance of shallow surface waves. Cross-correlations of 
noise obtained between station pairs provide estimates of group or phase velocities of the intervening media. The 
accuracy of the ANT depends on the spacing of the virtual-source receiver pairs. Deployments of dense seismic 
arrays with properly selected frequency bands have provided particularly high resolution measurements for recent 
near surface tomography studies (e.g., Bianco et al., 2019; Zigone et al., 2015; Zigone et al., 2019). Rayleigh 
waves, with prominent signature on vertical-component records, are sufficient to obtain the travel-time meas-
urements between station-pairs. The ambient noise cross-correlation leads to depth-dependent velocity structure 
using surface wave dispersion inversion (e.g., Bowden et al., 2015; Lin et al., 2013).

The depth resolution of tomography depends on the frequency range used. We apply ambient noise correlation 
techniques to a rich data set collected during 58 days in 2019 (07/13–09/08), consisting of a combination of a 
coarse regional deployment and dense 2D arrays across the M6.4 and M7.1 July 2019 Ridgecrest surface ruptures 
(Catchings et al., 2020). Specifically, we estimate the S-wave velocity structure to 1 km depth using 0.02–1 Hz 
Rayleigh waves. Group travel-times are extracted from narrow band cross-correlation peaks. From these, 2D 
Rayleigh wave velocity models are estimated. Surface-wave dispersion analysis across a broad frequency range 
is then carried out at each grid point providing a local shear wave profile using a fully nonlinear direct-search 
algorithm (Julià et al., 2000). Finally, we stack the resulting S-wave profiles to construct a 3D S-wave model from 
the surface to a depth of 5 km.

Typically, ANT is performed using regularized least squares and travel-time residuals or Eikonal equation inver-
sion (e.g., Lin et al., 2009). Recently, probabilistic neural network (Earp & Curtis, 2020), random mesh projection 
(Kothari & Gupta, 2019) and dictionary learning (Aghamiry & Gholami, 2018; Bianco & Gerstoft, 2018) have 
been used to generate the velocity models. Bianco and Gerstoft (2018) proposed improving tomography models 
by incorporating unsupervised machine learning. The method, locally sparse travel time tomography (LST), 
was demonstrated on a Nodal seismic array data set from Long Beach, CA 2011 (Bianco et al., 2019). The LST 
approach separates the overall or global tomography map into patches of small-scale or local variation, and 
considers the local and global information separately (Bianco & Gerstoft, 2018). LST, via sparse modeling, is 
capable of resolving sharp as well as smooth Earth features based on the data. Using the method for fault-zone 
imaging studies has potential to improve resolution, for example, at the boundaries of the LVZ, over conventional 
tomography approaches. We resample the travel times using cross-validation resampling to compare two ANT 
approaches: LST and Gaussian smoothing-kernel regularized least squares (LSQ) tomography (Equation S7 in 
Supporting Information S1). For both approaches, the parameters are chosen to minimize the travel time residual 
on withheld data (data not used to calculate model parameters).

2. Data Processing and Methodology
2.1. Data

We used the continuous seismic records (500  Hz sampling rate) from 07/13/2019 to 09/08/2019 around the 
Ridgecrest area by Catchings et al. (2020) on 342 seismic sensors, including 65 nodes in a regional array with 
8–15 km spacing and 277 nodes in 6 dense arrays with 60–170 m spacing (A1, A2, and B1–B4 in Figure 1a). All 
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seismic data are from the FDSN 3J network (for an example of the seismic 
data and its spectrogram, see Figure S2 in Supporting Information S1).

2.2. Noise Tomography With Locally Sparse Model

We first bandpass-filtered the data using a 0.02–1.00 Hz 2nd-order Butter-
worth filter and down-sampled the records to a 5 Hz sampling rate. An am-
plitude truncation technique was applied for removal of aftershocks (Gerstoft 
et al., 2006), and spectral whitening (e.g., Roux et al., 2005) was then used to 
create data with a uniform amplitude spectrum. The data from every station 
pair were cross-correlated segment by segment, and the resulting correlo-
grams were stacked over 6-hr intervals. Finally, a thresholding policy was 
adopted for quality control (see Section S1 in Supporting Information S1 for 
more details).

In conventional tomography, the least squares fit between observed and calcu-
lated travel times is minimized with regularization from the smoothness pri-
or. Here, the slowness pixels are represented by the vector s′ = s0 + sg ∈ RN, 
where s0 is a reference slowness and sg is a perturbation from the reference. 
The travel time observations are t′ = t0 + tg ∈ RN, where t0 and tg are the 
reference travel times and perturbations. Since the reference slowness s0 is 
known, the reference travel time t0 is t0 = As0, where A ∈ RM×N denotes the 
tomography matrix. We estimate the perturbations by

𝐭𝐭 = 𝐀𝐀𝐀𝐀𝐠𝐠 + 𝜖𝜖𝜖 (1)

where, ϵ ∈ RM is noise.

As a refinement of conventional tomography, LST introduces an additional 
slowness vector ss ∈ RN, which captures the local slowness features (Bian-
co & Gerstoft, 2018) using sparse modeling and dictionary learning. Here, 
D ∈ Rn×Q is a dictionary of Q atoms, and xi ∈ Rn are the sparse coefficients 
with n being the number of pixels in a patch. R is a binary matrix which 
selects a particular patch from sg, and the Bayesian maximum a posteriori 
estimations 𝐴𝐴

{

�̂�𝐬𝐠𝐠, �̂�𝐬𝐬𝐬, �̂�𝐗
}

 are formulated as

{

�̂�, �̂�, �̂,�
}

= ������
�� ,�� ,�,�

{

‖�(� − ���)‖22 + �1‖�� − ��‖22

+ �2
∑

�

‖��� − ����‖22
}

subject to‖��‖0 = � ∀�,

 (2)

with, 𝐴𝐴 �̂�𝐗 = [�̂�𝐱1,… , �̂�𝐱𝐼𝐼 ] and λ1, λ2 are hyperparameters. The dictionary D is 
learned during the optimization to represent local geophysical features with 
the sparse model. w is a weight matrix which normalizes the biased ray-azi-
muth distribution. Such normalization is necessary because the seismic sta-
tions within the deployment of coarse regional and dense 2D arrays (Fig-
ure 1b) are highly unevenly distributed, causing a significant bias of the the 
ray-path with certain azimuths. The normalization term w generates an un-
biased azimuth distribution among the stations involved in our imaging (see 
Figure 1c). We set l = 10 pixels (corresponding to ∼4 km) as our patch size, 
and λ1 = 1.58 and λ2 = 0.40 are the optimal hyperparameters picked from 
cross-validation tests (see Section 3 and the Supporting Information S1).

Figure 1. (a) Station locations (red triangles) and fault traces (green lines), (b) 
ray coverage in the model region (blue box), and (c) histogram of ray azimuths 
for the original and normalized distributions.



Geophysical Research Letters

ZHOU ET AL.

10.1029/2021GL095024

4 of 10

3. Cross-Validation: Model Selection
Fixed training datasets can be subdivided or resampled to obtain statistics of the data and models designed to 
explain them (Hastie et al., 2009). Cross-validation is one such technique, which is often used for selecting pa-
rameters for a model based on its performance on unseen samples (Raschka, 2018). In cross-validation, a given 
data set is divided into multiple training and validation datasets, called folds. The model weights are estimated 
using the training data, and its performance is evaluated on the validation set for each fold. The purpose of this 
test is to evaluate the model's ability to predict new data that was not used for training, over a sequence of different 
subdivisions of the data. This approach provides insight on the model's generalization to unseen data samples, 
and can indicate if the model is over- or underfitting the training data. In this work, models are chosen based on 
minimum average error on the validation set over the individual folds. Furthermore, the velocity models from the 
individual folds are used to obtain model uncertainty.

To evaluate the quality of velocity models obtained by the LST algorithm, we compare results from the LST 
method along with the LSQ tomography method (Rodgers, 2000).

Both LST and LSQ methods are used with a 10-fold cross-validation—we evenly sampled the station-wise travel 
time pairs into 10 folds and the sampled data in each fold have the same azimuth distribution (see Figure 1c) as the 
original data to avoid any direction-based bias. The LSQ model is solved assuming a constant reference velocity. 
The LST models are initialized using either a constant reference velocity, or the LSQ velocity model. The LST 
dictionary is initialized using Gaussian random atoms. Then, our LST and LSQ models are iteratively trained on 
9-fold data and tested on the remaining fold. Our tests are performed on 0.7–0.9 Hz, 0.5–0.7 Hz, and 0.2–0.5 Hz 
data and we use the normalized travel time residual (NTTR) as the evaluation loss

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙NTTR = ‖𝐰𝐰(𝐭𝐭 − �̂�𝐭)‖22 =
√

∑

𝑖𝑖

𝐰𝐰𝑖𝑖(𝐭𝐭𝑖𝑖 − �̂�𝐭𝑖𝑖)
2, (3)

where, w is the direction normalization vector for each fold, t is the observed real travel time vector, and 𝐴𝐴 �̂�𝐭 = 𝐀𝐀𝐀𝐀𝐀𝐀 
is the predicted travel time vector from tomography results. wi, ti and 𝐴𝐴 �̂�𝐭𝑖𝑖 are the i-th elements in w, t and 𝐴𝐴 �̂�𝐭 .

We summarize the averaged (mean) and the standard deviation of the Rayleigh group velocity (inverse slowness) 
maps for the 10-fold tests in different frequency bands in Figure 2a–b, and the 10-fold mean and standard devi-
ation of the NTTR losses in Figure 2c. Lower averaged loss indicates tomography maps which better predicted 
the travel time, and lower loss variance denotes higher confidence and more stable results. The LST method 
outperforms conventional LSQ on these terms. Initializing the LST learning algorithm with a good prior, which 
starts the learning algorithm closer to the optimal solution, can further improve the travel time residuals (see Fig-
ure 2a). The lower frequency band corresponds to deeper velocity structure. We observe that the average velocity 
increases and the width of the LVZs shrinks as the sensitivity zone goes deeper. Generally, the LST provides 
lower velocities inside the LVZs, which results in a stronger contrast between the LVZs and the surrounding are-
as, and also sharpens the boundaries of the LVZs. Since each fold-test drops 10% of the ray paths randomly, the 
smaller standard deviation indicates that the LST model can provide results with higher confidence and stability 
(see Figure 2b).

4. 2D Ambient Noise Tomography
Figure 3a shows the Rayleigh group velocity map generated by the averaged 10-fold cross-validation tests on 
LST, representing a depth-average captured by the resolution kernel for 0.02–1 Hz, namely the upper ∼1 km. The 
image shows relatively disjoint and spatially complex low-velocity regions on the map, in particular surrounding 
the surface rupture of the M7.1 and M6.4 Ridgecrest earthquakes. The average velocities of the surrounding 
material and the low-velocity zones are 2.8 and 1.7 km/s, respectively, and the width of these zones vary from 0 
to 5 km.

The phase gradients mapped from daily passes of the Sentinel satellites (Milliner & Donnellan, 2020) are super-
imposed on the group velocity map in Figure 3a, indicating distributed faulting from the 2019 Ridgecrest events. 
There is a strong correlation between the LVZs and these phase gradients, suggesting that the distributed faulting 
occurred inside a kilometer-wide deformation zone.
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Figure 2. (a) 10 fold-averaged Rayleigh wave group velocity maps using least square (LSQ) and locally sparse tomography 
(LST) methods for 0.7–0.9, 0.5–0.7, and 0.2–0.5 Hz with the 2 km/s contour lines (white) superimposed. The LST is 
initialized by the least-square results. The difference maps (LSQ-LST) are superimposed with fault traces from field mapping 
(green lines), phase gradients of the Sentinel1 radar satellite (blue traces), and the 2 km/s Rayleigh wave velocity contour 
lines from the LST maps. (b) 10 fold-averaged mean (bins) and standard deviation (errorbars) of the normalized travel time 
residual losses derived by the LSQ and LST, which were initialized by either uniform or LSQ-estimated velocities.
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Based on the Rayleigh wave group velocity resolution kernels, each frequency band senses different depths of the 
the shear wave velocity (Herrmann, 2013). For the bands in Figure 3c–3d the peak depths are 300 m (0.7–0.9 Hz), 
450 m (0.5–0.7 Hz), and 700 m (0.2–0.5 Hz). Notice that the average velocity of the LVZs decrease/width of the 
LVZs shrinks as the depth increases, in agreement with the expected localization at greater depth found by other 
fault zone studies such as Zigone et al. (2015); Zigone et al. (2019).

5. Surface Wave Dispersion Inversion
The Rayleigh wave group velocities obtained by cross-correlation of ambient noise at each station pair are used 
to estimate group velocity dispersion curves. We use the fundamental mode dispersion curves picked in the fre-
quency range of 0.1–3.0 Hz, and the estimated group velocities are inverted for a 1D shear-wave profile using a 
stochastic damped least squares inversion that minimizes the L2 norm misfit between synthesized and observed 
data (We use the SURF96 program (Herrmann, 2013). Examples of dispersion curves and the resulting S-wave 
profile are shown in Figure S3 in Supporting Information S1.). The technique (Herrmann, 2013) allows for the 
evaluation of partial derivatives of the Rayleigh wave group velocities with respect to the S-wave velocity and 
density for each layer. The model parameters are iteratively perturbed from the initial guess with a starting model 
taken from the Southern California Earthquake Center Community Velocity Model Version S-4.26 (Magistrale 
et al., 1996), which generally converges after a few iterations. The shear velocity profile is estimated for station 
pairs generated by every other station. The regions on either side of the surface rupture are modeled separately 
because of differences in the elevation of the stations (low elevations on the western side and high elevations on 
the eastern side).

Figure 4a shows cross sections of shear wave velocities from the inverted surface wave dispersion curves at the 
dense arrays A1, A2, B1, B2, B3, and B4, and a composite 3D image of shear wave velocities obtained by the 
sparse arrays is shown in Figure 4b. We observe relatively wide LVZs in the upper 1 km range of Figures 4a 
and 4b in our LST results. The surface traces from the M6.4 and M7.1 Ridgecrest events intersect the cross 

Figure 3. Rayleigh wave group velocity maps obtained using locally sparse tomography for bandwidths (a) 0.02–1, (b) 0.7–0.9, (c) 0.5–0.7, and (d) 0.2–0.5 Hz with 
superimposed fault traces that ruptured in the 2019 sequence (green lines), other Quaternary faults (black lines) and Sentinel1 phase gradients (blue traces). The 
velocity models are averaged over cross-validation folds. See also Figure S4 in Supporting Information S1.
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Figure 4. (a) Vertical cross section of the shear wave velocities from the A1, A2, B1, B2, B3, and B4 station arrays. The 
intersection with the surface rupture of the M6.4 and M7.1 Ridgecrest events (green circles) and 2 km/s contours (white lines) 
are indicated. (b) Composite 3D image of shear wave velocities obtained from inversion of Rayleigh waves dispersion curves, 
delineating flower-shaped low-velocity zones.
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sections near the center of the LVZs, and the shallow cross sections reveal distinct LVZ flower structures, as 
observed by Zigone et al. (2019). However, the complexity of the fault zone, as characterized from the variation 
of particularly the width of the LVZ, is remarkable. For example, the fault zone at arrays A1 and B1 appear to de-
lineate two or more separate low-velocity parts of the fault zone, which may represent a concentration of damage 
along different locations of the rupture for past events.

6. Discussion and Conclusions
Our tomographic model of the Ridgecrest area obtained using ambient noise and the LST approach resolves up 
to 5 km-wide flower-shaped LVZs with a velocity contrast of 40% to the host rock. The imaged LVZs are inter-
sected by the fault traces of the M7.1 and M6.4 Ridgecrest events, suggesting an origin as a fault damage zone. It 
is unlikely that sedimentary deposits significantly contributed to the LVZs, which in several areas are located on 
topographic relief (refer to Figure 1a). In addition, the LVZs are relatively uncorrelated with depths to bedrock 
obtained from inversion of gravity data (Langenheim, 2019). We have shown that our LST method, by being 
primarily data-driven, can yield improved seismic velocity images over conventional approaches in terms of 
smaller predicted travel time residuals. We further obtained data-driven estimates of the model uncertainty with 
a cross-validation resampling method. It was observed that the model obtained with LST had lower uncertainty 
than that from regularized LSQ.

Our results are in general agreement with other imaging studies of fault zone structure (e.g., Ben-Zion et al., 1999; 
Lewis & Ben-Zion, 2010; Li & Vidale, 1996), including delay time analysis for the M7.1 Ridgecrest event (Qiu 
et al., 2021). Similarly, Antoine et al. (2021) found a 2–4 km wide fault zone along the M7.1 event using optical 
satellite image correlation. They also showed that slip associated with the M7.1 earthquake is caused by rupture 
on a complex set of primary fault segments and shallow (𝐴𝐴 𝐴 2 km) surface diffuse deformation, with some inelastic 
contribution required to explain the latter. These findings are in agreement with the depth of primary velocity 
reduction in our imaging (see Figure 4), as well as the “flower-structure” of nonlinear deformation obtained by 
dynamic rupture simulations (Ma, 2008; Roten et al., 2018). Finally, the dimensions of our imaged LVZ in Ridge-
crest are largely consistent with high-resolution seismic reflection imaging from the 2000 M6.7 Tottori, Japan, 
earthquake that revealed a 2 km-deep flower structure with several kilometer-wide surface extent (Nishitani & 
Inoue, 2001). The 2000 Tottori earthquake occurred on a near-vertical, shallow crustal strike-slip event, much 
like the M7.1 Ridgecrest event, with similar distributed faulting and surface cracks.

While the imaged LVZs along the M7.1 and M6.4 Ridgecrest fault traces may be solely explained by the 2019 
sequence, our imaging reveals “pockets” of low velocity material outside the proposed damage zones for the 2019 
Ridgecrest event (see Figure 3). The resolution of our results in these areas is degraded from limited ray cover-
age, and some of the low velocities may be caused by sediments. However, it is possible that these low velocities 
represent damage zones from past Quaternary earthquakes within the Little Lake Fault Zone located in the south-
western part of the model area (see Figure 3). Since, these faults have not experienced large historical events, the 
fault damage here may have persisted for hundreds, maybe thousands of years. The existence of such long-lasting 
damage zones agrees with results for the Calico fault zone (Cochran et al., 2009; Zhang & Gerstoft, 2014) and the 
San Jacinto Fault (Zigone et al., 2019), which implies relatively slow damage zone healing.

The shallow fault zone obtained from our surface wave dispersion is highly heterogeneous. Specifically, the 
imaged LVZ, as well as off-fault deformation from the mapped phase gradients from the Sentinel1 radar (see Fig-
ure 3), are largely missing along a ≈10 km stretch from the M7.1 epicenter toward the south to the intersection of 
the M6.4 earthquake. The lack of significant off-fault deformation in this area may be due a relatively section of 
the fault with large surface displacement as indicated by kinematic source inversions (e.g., K. Wang et al., 2020), 
accommodating most of the slip on the primary fault traces. Finally, the strong heterogeneity of the shallow fault 
zone obtained from our surface wave dispersion suggests an incipient fault zone, with multiple fault segments 
not optimally oriented for failure (Crider & Peacock, 2004), as found in other areas (e.g., Goldberg et al., 2020; 
Lomax, 2020; Shelly, 2020; Shi & Wei, 2020). Such regions are less likely to host large earthquakes, as compared 
to mature faults, for example, the San Andreas fault.
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Data Availability Statement
The seismic data used in this paper are accessed from the FDSN 3J:RAMP deployment of 3C nodal for July 
Searles Valley 2019 Earthquake (doi: 10.7914/SN/3J 2019).
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