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ABSTRACT
We developed a 3D elastic wave propagation solver that supports topography using stag-
gered curvilinear grids. Our method achieves comparable accuracy to the classical fourth-
order staggered grid velocity–stress finite-differencemethod on a Cartesian grid. We show
that the method is provably stable using summation-by-parts operators and weakly
imposed boundary conditions via penalty terms. The maximum stable timestep obeys a
relationship that depends on the topography-induced grid stretching along the vertical
axis. The solutions from the approach are in excellent agreement with verified results
for a Gaussian-shaped hill and for a complex topographic model. Compared with a
Cartesian grid, the curvilinear grid adds negligible memory requirements, but requires
longer simulation times due to smaller timesteps for complex topography. The code shows
94% weak scaling efficiency up to 1014 graphic processing units.

KEY POINTS
• High-frequency seismic hazards can be significantly

affected by topographic effects.
• We developed a provable stable 3D wave propagation

solver supporting topography via curvilinear grids.

• Our method offers a computationally efficient approach
to explore topographic effects on ground motions.

INTRODUCTION
Seismic modeling studies often successfully reproduce ampli-
tudes and in many cases the phasing of observed ground
motions for periods longer than about 2 s (e.g., Olsen et al.,
2003; Aagaard and Graves, 2011) using flat free surface
approximations, conveniently implemented in numerical wave
propagation methods, for example, using asymmetry of
stresses and ghost layers in finite-difference (FD) methods
(FDMs; Graves, 1996; Gottschämmer and Olsen, 2001).
However, at higher frequencies, data indicate that surface
topography could play an important role in ground-motion
amplification. For example, Spudich et al. (1996) showed that
the 1.78g acceleration recorded at station Tarzana from the
1994 Northridge earthquake was in part due to a factor-of-
4.5 directional resonance amplification at 3.5 Hz of the sensor
located on top of a 15-m-high hill. This trend is confirmed by
simulations; for example, Rodgers et al. (2010) showed that
topographic roughness has a dramatic effect on amplification

of higher-frequency (2–8 Hz) waves generated from sources at
the North Korean nuclear test site. In addition, ground-motion
variability, an important factor in seismic hazard analysis, can
be strongly affected by surface topography, as well as small-
scale velocity perturbations in the crust (Imperatori and Mai,
2015). Thus, it is imperative to develop stable, accurate, and
efficient support for topographic effects in 3D wave propaga-
tion and ground-motion estimation.

Our primary target application for topography support is an
anelastic wave attenuation propagation code with suffix derived
from the authors, Olsen, Day, and Cui (AWP-ODC), a numeri-
cal code developed to solve the viscoelastodynamic equations in
a complex 3D medium. The code is highly scalable on both cen-
tral processing unit and graphic processing unit (GPU) plat-
forms, as demonstrated for large-scale simulations including
TeraShake (Olsen et al., 2006), TeraShake-2 (Olsen et al.,
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2008), ShakeOut-D (Olsen et al., 2009), and M8 (Cui et al.,
2010). AWP-ODC is also an important community modeling
tool used to further knowledge of the dynamics and hazards
of earthquakes and to support engineering research for safer
building designs (Crouse et al., 2018). AWP-ODC offers a com-
putationally efficient approach to large-scale numerical wave
propagation, in part due to favorable numerical dispersion prop-
erties derived from the fourth-order staggered grid (SG) FD
stencils. In addition to computational efficiency, AWP-ODC
does not require anymesh generation, unlike unstructured mesh
methods such as finite elements (e.g., Tu et al., 2006), spectral
elements (e.g., Komatitsch and Vilotte, 1998), and discontinuous
Galerkin (DG)methods (e.g., Käser and Dumbser, 2008; Etienne
et al., 2010; Chung et al., 2015; Breuer et al., 2017). These aspects
make AWP-ODC an appropriate target application for explor-
ing ground-motion effects from topographic scattering.

A wide variety of approaches have been proposed to imple-
ment irregular surface topography into the SGFD method; we
list a few examples later. Takenaka et al. (2009) presented an
image condition to implement both land topography and
liquid–solid topography in a fourth-order SGFD code. Mittet
(2002), Zeng et al. (2012), and Kristek et al. (2016) assigned
elastic parameters and density above the free surface to
approximate a vacuum formulation in different ways, either by
including tapering or averaging or by scaling the elastic
moduli. Peskin (1972) developed the immersed-boundary
method that attempts to satisfy the traction-free condition
by combining ghost grid values beyond the free surface by
interpolation, followed later by solvers from Almuhaidib and
Toksöz (2015) and Bayliss et al. (1986). Unfortunately, these
approaches suffer from stability issues or need a resolution that
renders them inhibitive for realistic models and frequency
ranges, such as those required for engineering applications.

Curvilinear grids represent a somewhat different class of
approaches to implement irregular topography into SGFD
schemes (e.g., Lombard et al., 2008; Hu, 2016). Several
researchers have proposed curvilinear approaches using collo-
cated grids (e.g., Zhang et al., 2012; Sun et al., 2018). The
nature of SGs presents a particular challenge for implementing
curvilinear grids due to the distribution of wavefield variables
throughout grid elements. In Hestholm and Ruud (1994, 1998,
2002), the authors use the classic staggered formulation and
low-order interpolation to discretize the additional terms con-
sistently. However, this method does not preserve the original
SGFD scheme’s accuracy and may suffer from instabilities in
long duration problems (Hestholm, 2003). Some of the chal-
lenges due to SGs have been circumvented by mimetic grids
(e.g., de la Puente et al., 2014) or by rotating the grid (e.g.,
Saenger and Bohlen, 2004) to partially collocate the stresses
and velocities. However, Saenger and Bohlen (2004) found that
rotated SGs require a significantly finer discretization of
irregular topography for the same accuracy compared with
standard SGs, making the technique less practical.

In this work, we discretize the elastic wave equation in the
first-order form on a staggered curvilinear grid using high-order
summation-by-parts (SBP) FD operators to develop an accurate
and energy-conserving numerical method. The SBP approach
forms a general framework for developing and analyzing the sta-
bility of many numerical schemes across various scientific and
engineering applications. SBP operators with weakly imposed
boundary conditions via the simultaneous approximation term
(SAT) penalty technique (Carpenter et al., 1994) lead to energy-
stable schemes for many well-posed problems. The SBP-SAT
approach enables energy stable multiblock, nonconforming
structured grid (Mattsson and Carpenter, 2010) and unstruc-
tured-to-structured grid couplings (Kozdon and Wilcox, 2016;
Lundquist et al., 2018). The approach extends beyond FDMs
and applies to other numerical methods, for example, finite vol-
ume (Nordström et al., 2003), spectral element DG (Gassner,
2013), and flux reconstruction (Ranocha et al., 2018). See also
Svärd and Nordström (2014) and Fernández et al. (2014) for a
review of the SBP-SAT approach.

In the context of computational seismology, the SBP
approach has previously been used to develop energy-stable
and high-order FD methods on collocated curvilinear grids in
both first- and second-order forms of the acoustic and elastic
wave equations using both central differencing and upwinding
(Sjögreen and Petersson, 2012; Kozdon et al., 2013;
Dovgilovich and Sofronov, 2015; Duru and Dunham, 2016).
SBP operators that enable energy-stable and energy-
conservative discretizations of wave equations on SGs were
introduced in O’Reilly et al. (2017) and extended to curvilinear
grids in O’Reilly and Petersson (2020), nonconforming grid
coupling in Gao et al. (2019), and FEM-SGFD coupling in
Gao and Keyes (2019).

Although many of the traditional SGFD approaches rely on
ghost points andmirroring to impose the traction-free boundary
condition in the elastic wave equation, we weakly impose it via
SAT terms. Unlike collocated grids or partially SG approaches,
our approach must treat additional terms that cannot be natu-
rally discretized on an SG. We do so using high-order interpo-
lation and achieve comparable accuracy to the classic SGFD
scheme, while also preserving its computational efficiency.
Because the method is provably energy conservative, it can
handle any smooth topography without producing instability
as long as the timestep is sufficiently small.

This article is arranged as follows. First, we describe the cur-
vilinear grid approach used to support irregular topography,
including its implementation in the fourth-order AWP SGFD
code. We then analyze the stability of the method and
verify the accuracy of the method for a Gaussian hill and a real-
istically complex topographic model. Finally, we summarize the
method and its application in simulations of 3D wave propaga-
tion in complex media. A discussion of the energy balance for
the elastic wave equation is provided in Appendix A and appli-
cation to the semidiscrete problem in Appendix B.
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PROBLEM FORMULATION
Consider the elastic wave equation in Cartesian coordinates for
a linear isotropic material posed on a domain Ω in 3D:

EQ-TARGET;temp:intralink-;df1;41;705ρ
∂vi
∂t

�
X3
j�1

∂σ ij
∂xj

; �1�

EQ-TARGET;temp:intralink-;df2;41;657

∂σ ij
∂t

� λ
X3
k�1

∂vk
∂xk

δij � μ

�
∂vi
∂xj

� ∂vj
∂xi

�
; �2�

for i � 1; 2; 3, j � 1; 2; 3. In equations (1) and (2), xi are
Cartesian coordinates, ρ > 0 is the density, μ > 0 is the shear
modulus, λ > 0 is Lamé’s first parameter, vi are the compo-
nents of the particle velocity field, and σ ij are the components
of the symmetric stress tensor, σ ij � σ ji. Our index notation
does not sum repeated indexes.

Although most seismic wave propagation applications
require some way of absorbing outgoing waves at exterior
boundaries, for example, sponge layers (Cerjan et al., 1985),
absorbing boundary conditions (Givoli et al., 2006), perfectly
matched layers (Berenger, 1994; Olsen and Marcinkovich,
2003), and super grid (Appelö and Colonius, 2009), we focus
exclusively on imposing a traction-free boundary condition in
this study.

On the exterior boundary ∂Ω, we prescribe the traction-free
boundary condition

EQ-TARGET;temp:intralink-;df3;41;392T � 0; �x1; x2; x3� ∈ ∂Ω; �3�

in which T is the traction vector. The Cartesian components of
the traction vector are

EQ-TARGET;temp:intralink-;df4;41;327Ti �
X
j

σ ijnj; �4�

in which nj are the Cartesian components of the outward
pointing unit normal with respect to ∂Ω. Our approach to
implement this traction-free boundary using a curvilinear grid
is described in the following.

The elastic wave equation in curvilinear coordinates
We first review some of the key concepts for working with cur-
vilinear coordinate transforms (Thompson et al., 1998;
Grinfeld, 2013). Let �r1; r2; r3� denote curvilinear coordinates
that satisfy 0 ≤ ri ≤ 1 for i � 1; 2; 3. The superscripts i are con-
travariant indexes, not powers. The Cartesian coordinates map
to the curvilinear coordinates via

EQ-TARGET;temp:intralink-;;41;120 x1 � F1�r1; r2; r3�; x2 � F2�r1; r2; r3�; x3 � F3�r1; r2; r3�:

We assume that this mapping is continuously differentiable,
nonsingular, and one-to-one. By differentiating the mapping

with respect to the curvilinear coordinates, we obtain the
covariant basis

EQ-TARGET;temp:intralink-;df5;308;718ai �
∂x1
∂ri
∂x2
∂ri
∂x3
∂ri

2
64

3
75; aij �

∂xj
∂ri

; i � 1; 2; 3; j � 1; 2; 3: �5�

The covariant basis vectors are tangential to the grid lines
spanned by the curvilinear coordinates.

Let ai denote the contravariant base vectors that are defined
by the orthogonality relationship

EQ-TARGET;temp:intralink-;df6;308;614ai · aj � δij; aj �
∂rj
∂x1
∂rj
∂x2
∂rj
∂x3

2
64

3
75; aji � ∂rj

∂xi
; i � 1; 2; 3;

j � 1; 2; 3;

�6�

in which δij is the Kronecker delta and a1 · a2 is the dot product.
The determinant of the Jacobian J of the curvilinear mapping is

EQ-TARGET;temp:intralink-;df7;308;497J � a1 · �a2 × a3� � a2 · �a3 × a1� � a3 · �a1 × a2� > 0: �7�

In equation (7), a1 × a2 is the cross product and a1 · a2 is the dot
product. Because the covariant base vectors are tangential to the
curvilinear grid lines, we can find the normal with respect to the
boundary. For example, the outward pointing unit normal on
the top boundary is

EQ-TARGET;temp:intralink-;df8;308;393n � a1 × a2
ja1 × a2j

; r3 � 1: �8�

In equation (8), j · j denotes the Euclidean norm in 3D, that
is, jxj �

���������������������������
x21 � x22 � x23

p
.

Next, we derive a curvilinear formulation of the governing
equations that is suitable for discretization. For this purpose,
we need to transform the partial derivatives in the governing
equations from Cartesian to curvilinear coordinates. To obtain
a provably stable method, we need to combine partial deriva-
tive transforms of stresses and velocities. Following Duru and
Dunham (2016), we transform the partial derivatives of the
stress components using the conservative form
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We transform the partial derivatives of the velocity compo-
nents by the chain rule

EQ-TARGET;temp:intralink-;df10;308;94
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The details of the discretization of equations (9) and (10) on an
SG are critical for producing an accurate and stable numerical
scheme. By transforming equations (1) and (2) using equa-
tions (9) and (10), respectively, we get
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To demonstrate some of the challenges that we face when
developing the numerical method, we expand all terms in
equations (11) and (12):
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The curvilinear formulation of the elastic wave equation
recovers the Cartesian formulation if the mapping satisfies
akj � δkj and J � 1. Hence, a general curvilinear formulation
includes six additional terms per velocity component equation,
four per shear stress component equation, and 10 per normal
stress component equation. The terms containing akk are the
diagonal terms. Because these terms are present in the
Cartesian formulation, they are straightforward to discretize.
The off-diagonal terms, akj, k ≠ j, cannot be naturally repre-
sented in the SG. When we construct the numerical scheme,
we accurately discretize the off-diagonal terms by combining
interpolation and difference operators.

Weakly imposed boundary conditions
In constructing the numerical scheme, we only approximately
satisfy the traction-free boundary condition, imposed by a

penalty term acting on the right side of the momentum balance
equations. The role of the penalty term is to drive the numeri-
cal solution on the boundary toward satisfying the boundary
condition. The penalty term depends on one or more real-val-
ued weights that must be chosen such that the scheme is stable.

The construction and analysis of penalty terms can be more
easily done and understood in the continuous setting first. To
weakly impose the boundary condition (equation 3), we add
the following penalty term to equation (11)

EQ-TARGET;temp:intralink-;df15;320;627ρ
∂vi
∂t

� 1
J

X
k;j

∂

∂rk
�Jakjσ ij� − si; �15�

in which

EQ-TARGET;temp:intralink-;df16;320;562si � αL�Ti�: �16�
In equation (16), α is the penalty weight. In Appendix B, we
show that this weight must be α � 1 to conserve energy. In
addition, L is a lifting operator (Arnold et al., 2002; Janivita
Joto Sudirham et al., 2003) that converts a volume integral into
a surface integral

EQ-TARGET;temp:intralink-;df17;320;471

Z
Ω
viL�Ti�dV �

Z
∂Ω

viTidS: �17�

In equation (17), dV is the infinitesimal volume element of Ω
and dS is the infinitesimal element of the surface area of ∂Ω.
The formulation in equations (12)–(15) is the starting point for
the construction of the numerical scheme, which is presented
in the Numerical Method section.

NUMERICAL METHOD
Our numerical method for discretizing equations (12)–(15)
uses the SBP SGFD operators developed in O’Reilly and
Petersson (2020). We begin by reviewing the SBP SGFD
method in 1D, followed by its extension to 3D. In particular,
we focus on the discretization of the conservative and noncon-
servative forms of the partial derivative formulas in equa-
tions (9) and (10) in an energy-conserving manner.

SBP operators in 1D
In 1D, we discretize the interval 0 ≤ r ≤ 1 using N � 1 equi-
distant grid points, including the boundary points, into the grid
vector,

EQ-TARGET;temp:intralink-;;320;172 r � �r0r1 … rN �T ; ri � ih; i � 0; 1;…;N ; h � 1
N
:

We also introduce a grid vector of length N � 2 that collects
mid points and boundary points,

EQ-TARGET;temp:intralink-;;320;99 r̂��r̂0r̂1…r̂N�1�T ; r̂0�0; r̂i�
�
i−
1
2

�
h; r̂N�1�1; i�1;…;N :
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The velocity and stress field components v�r; t� and σ�r; t�,
respectively, are approximated at the nodal and cell-centered
grid points by the grid functions vi � v�ri; t� and σ i � σ�r̂i; t�.
The grid values are collected in the vectors v � �v0v1…vN �T
and σ � �σ0σ1…σN�1�T .

The curvilinear formulation of the governing equations (11)
and (12) has a special symmetry. For the momentum in the
velocity equation (11), only the stress components (equa-
tion 12) occur on the right side. The opposite pattern is true
for the stress equations. This symmetry allows us to approxi-
mate the first derivative of stress at the grid points that contain
the velocity grid values, and vice versa. Let D denote a SBP FD
operator that acts on a grid function stored at the cell-centered
values and approximates the derivative at the nodal grid points.
Likewise, let D̂ denote an FD operator that acts on a grid func-
tion stored at the nodal values and approximates the derivative
at the cell-centered grid points. These difference operators
result in the following approximations
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Because of the different number of grid points in each grid
defined by stresses and velocities, the difference approxima-
tions form rectangular matrices. Each row in the matrices con-
tains the coefficients in an unknown FD stencil. The first few
points, including the boundary points, contain one-sided FD
stencils; all of the rows for the interior grid points contain
the same central FD stencil.

The one-sided boundary stencils are accurate to order p and
the interior stencil is accurate to order 2p. In this work, we use
SBP operators that satisfy p � 2 (the second-order boundary
accuracy and the fourth-order interior accuracy). In this case,
the operators D and D̂ differentiate any constant, linear, and
quadratic functions exactly (to machine precision), for example,

EQ-TARGET;temp:intralink-;df18;41;224ξ̂ � 2r; D̂ξ � 2r̂; ξ � �r20r21… r2N �T ; ξ̂ � �r̂20r̂21…r̂2N�1�T :
�18�

In addition to accuracy constraints, the SBP operators sat-
isfy constraints that allow them to approximate the integration
by parts formula

EQ-TARGET;temp:intralink-;df19;41;133
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Z
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By construction, the SBP operators approximate equation (19)
using the SBP formula

EQ-TARGET;temp:intralink-;df20;308;744σTĤ D̂ v � −vTHDσ � vNσN�1 − v0σ0: �20�

This approximation holds the key to proving stability with SBP
difference operators and is valid for any grid vectors σ and v of
appropriate sizes. In equation (20), the diagonal matrices H
and Ĥ define quadrature rules with positive weights. These
quadrature rules are accurate for degree 2p − 1 polynomials
(Prochnow et al., 2017). The SBP property can also be written
as a matrix relationship

EQ-TARGET;temp:intralink-;df21;308;627Ĥ D̂ � −�HD�T � B̂; B̂ � BT � êN�1eTN − ê0eT0 ; �21�

in which e0 � �1 0 … 0�T , eN � �0 … 0 1�T such that
v0 � eT0 v, vN � eTNv, and so forth.

Let P and P̂ be SBP interpolation operators, defined
analogously to D and D̂, respectively. In the interior of these
operators, we use a central cubic interpolation formula. For a
few grid points near the boundary, we use linear interpolation
formulas. Thus, the operators interpolate any constant and lin-
ear functions exactly (to machine precision), for example,

EQ-TARGET;temp:intralink-;df22;308;483Pr̂ � r; P̂r � r̂: �22�

Similar to the integration by parts property, the interpolation
operators also approximate an integral relationship. In the
continuous setting, σ and v commute, and therefore

EQ-TARGET;temp:intralink-;;308;406

Z
1

0
σvdr �

Z
1

0
vσdr:

Although commutativity does not necessarily hold in the discrete
case, the SBP interpolation operators preserve this property,

EQ-TARGET;temp:intralink-;df23;308;342σTĤ P̂ v � vTHPσ; Ĥ P̂ � �HP�T : �23�

SBP operators in 3D
The grid values of the velocity and stress components are
extended to 3D as shown in Figure 1a. All of these values are
collected in the corresponding grid vectors vi and σ ij. This
arrangement coincides with the traditional SG formulation for
an interior grid cell (Levander, 1988; Graves, 1996). However,
because of the use of grid lines r̂k that include boundary points,
each stress and velocity component has a grid value on the
boundary (Fig. 1b,c). For example, consider the boundary cell
in Figure 1b. Here, the normal stress components are stored at
both the cell center and the center of the face on the boundary.

The extension of the SBP operators to 3D follows by apply-
ing them grid line by grid line in each direction. Let Dk denote
differentiation along each grid line in the rk direction.
Although operators that act in different directions always com-
mute, for example, D1P̂2 � P̂2D1, those acting in the same
direction do not commute, for example, D1P̂1 ≠ P̂1D1. In
Figure 1a, we can always infer from context if a difference
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operator acts on a grid function defined at cell-centered grid
points or nodal grid points. For example, to differentiate σ13 in
the r3 direction we must use D̂3σ13 because the grid values of
σ13 in the r3 direction are defined at the nodal grid points. To
simplify the presentation of the numerical scheme, we infer
from context what type of operator to use and introduce
the following conventions. Let Dk and D̂k be difference oper-
ators that act on any σ ij and vi, respectively, in the rk direction.
The interpolation operators, Pk and P̂k, adopt the same con-
ventions. In 3D and with this notation, the SBP properties in
equations (21) and (23) become

EQ-TARGET;temp:intralink-;df24;53;354ĤkD̂k � −�HkDk�T � B̂k; B̂k � BT
k ; �24�

EQ-TARGET;temp:intralink-;df25;53;316ĤkP̂k � �HkPk�T : �25�

Discretization of the partial derivatives
In this section, we describe the key steps in the discretization of
the partial derivatives for our energy conservative high-order-
accurate numerical method. Interested readers are referred to
Appendices A and B for the complete analysis.

Two primary challenges occur when discretizing these terms:

• The approximation must be consistent at all grid points. This
constraint requires a mix of interpolation and differentiation.

• To conserve energy in the discrete case, the order of oper-
ations becomes important. This is because matrices do not
necessarily commute.

Given the large numbers of terms in equations (13) and (14)
that we must discretize, it is convenient to analyze a simpler set
of equations.

We consider the elastic wave equation in quasi-1D form,
having v1�x3; t� and σ13�x3; t� as the only nonzero components.
In this case, equations (13) and (14) simplify to

EQ-TARGET;temp:intralink-;df26;320;705ρ
∂v1
∂t

�1
J

�
∂

∂r1
�Ja13σ13��

∂

∂r2
�Ja23σ13��

∂

∂r3
�Ja33σ13�

�
; �26�

EQ-TARGET;temp:intralink-;df27;320;640

∂σ13
∂t

� μ

�
∂v1
∂r1

a13 � ∂v1
∂r2

a23 � ∂v1
∂r3

a33
�
: �27�

To accurately form a semidiscrete approximation for these
equations, we must take into account how the fields v1 and σ13
are staggered with respect to each other in space. Let us form a
consistent semidiscrete approximation of equation (26) first.
The first partial derivative term 1

J
∂
∂r1 �Ja13σ13� cannot be natu-

rally discretized on the SG. If we only approximate this partial
derivative term by a difference operator in the r1 direction,D1,
the resulting approximation is accurate in the wrong location
—at the v3 grid location (see Fig. 1). Since the approximation
must be accurate at the v1 grid location, we first interpolate σ13
to the cell center (normal stress grid location) and then apply a
difference approximation in the r1 direction to obtain an accu-
rate approximation at the desired grid location. To interpolate
σ13 to the cell center, we interpolate all values along each grid
line in the r3 direction usingP3 and then interpolate the result
along each grid line in the r1 direction using P1. A further
complication is that we must also discretize the metric term
Ja13; we have chosen to discretize this term at the v1 grid loca-
tion, but other choices are also possible. We apply a similar
strategy to discretize the second term. The third term is the
diagonal term that appears in the Cartesian formulation of
the elastic wave equation, and therefore it can be naturally dis-
cretized on the SG.

By applying the strategy outlined earlier, our semidiscrete
approximation of equation (26) becomes

EQ-TARGET;temp:intralink-;df28;320;251

ρ
dv1
dt

� �J−1�1D1P1�Ja13�1P3σ13 � �J−1�1D2P2�Ja23�1P3σ13

� �J−1�1D3�Ja33�13σ13: �28�

As previously mentioned, equation (28) mixes interpolation
and differentiation to guarantee that the approximation is
consistent at the v1 grid values. Figure 2 shows the actions per-
formed by chaining together interpolation and differentiation
operators for selected cases. In our notation, �J−1�1 contains the
values of the reciprocal of the Jacobian determinant evaluated
at the same grid points as the v1 grid values. Likewise, �Ja33�13
is evaluated at the same grid points as the σ13 grid values.

Next, consider the following semidiscrete approximation of
equation (27):

(a) (b)

(c)

Figure 1. Arrangement of stress and velocity components within the first
octant of a grid cell. (a) Grid cell in the interior, and grid cell on the
boundary for (b) stress components and (c) velocity components. The color
version of this figure is available only in the electronic edition.
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EQ-TARGET;temp:intralink-;df29;41;399

dσ13
dt

� μ13��J−1�13P̂3�Ja13�1P̂1D̂1v1

� �J−1�13P̂3�Ja23�1P̂2D̂2v1 � �a33�13D̂3v1�: �29�

By comparing equations (28) and (29), we see that the order
of operations is reversed. In equation (28), the partial derivatives
terms are approximated by first interpolating and differencing,
whereas in equation (29), the terms are first differenced and then
interpolated. This particular discretization overcomes the issue
that the interpolation and difference operators do not commute,
which allows us to show that the scheme is energy conserving;
see Appendix B. In equation (29) the off-diagonal terms are
scaled by the Jacobian whereas the diagonal term is not. This
scaling avoids requiring SBP interpolation operators that com-
mute with the Jacobian to obtain an energy conservative discre-
tization (O’Reilly and Petersson, 2020).

Discretization of boundary conditions
The traction-free boundary condition is weakly imposed by
discretizing the penalty term in equation (15). In Appendix B,
we show that the discretized penalty term can be absorbed
into the Dk operators resulting in the modified operators
D̃k � Dk −H−1

k Bk. Therefore, to weakly impose the trac-
tion-free boundary condition, we set the penalty term to zero
and replace Dk with D̃k in the discretized momentum balance
equations.

Application to irregular
topography
The formulation in equa-
tions (11) and (12) is general
in the sense that it can treat
any type of curvilinear geometry
that can be expressed by a con-
tinuously differentiable and
nonsingular mapping. To apply
the method to topography, we
introduce the 1D mapping

EQ-TARGET;temp:intralink-;df30;433;601

x1 � L1r1; x2 � L2r2;

x3 � F�r1; r2; r2�: �30�

The constants L1 and L2 define
the length scales of the compu-
tational domain in the x1 and x2
directions, respectively. This 1D
mapping significantly reduces
the number of expensive mixed
interpolation and differentiation
operations to compute. In addi-
tion, we restrict attention to
decomposable mapping func-
tions F, such as

EQ-TARGET;temp:intralink-;df31;308;387F�r1; r2; r3� � f �r1; r2�g�r3�: �31�

In equation (31), 0 ≤ g�r3� ≤ 1 is a monotonically increasing
function that controls the distribution of grid points in the r3

direction. The function f �r1; r2� describes the shape of the free
surface at the top side of the computational domain. All other
sides of the computational domain are planar.

The mapping in equation (31) reduces the memory storage
costs of the method while taking advantage of precomputation.
In a general curvilinear formulation, the metric coefficients are
usually stored as 3D arrays (unless they are repeatedly recom-
puted to save memory). In total, there are 10 such arrays (nine
for the contravariant basis and one for the Jacobian determi-
nant), and they all need to be evaluated at seven different grid
positions (corresponding to the stress and velocity component
positions). In contrast, the mapping in equations (31) allows
us to precompute and store all of the metric coefficients as com-
binations of 1D and 2D arrays for all seven grid positions at a
negligible cost.

By computing the covariant base vectors for the mapping in
equations (30) and (31), we find

EQ-TARGET;temp:intralink-;;308;120 a1 �
L1
0

g ∂f
∂r1

2
4

3
5; a2 �

0
L2
g ∂f
∂r2

2
4

3
5; a3 �

0
0

f dg
dr3

2
4

3
5:

Figure 2. Interpolation and differentiation of stresses and velocities in a grid cell. Arrows point to where the approxi-
mation is evaluated.Dk and D̂k are difference operators that act on any σ ij and vi, respectively, in the rk direction,
andPk and P̂k are interpolation operators adopting the same conventions. To construct summation-by-parts (SBP)
energy-conserving approximations, the order of interpolation and differentiation must be reversed for stresses
compared with velocities, and vice versa. The color version of this figure is available only in the electronic edition.
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The contravariant base vectors are

EQ-TARGET;temp:intralink-;df32;53;731a1 �
1
L1
0
0

2
4

3
5; a2 �

0
1
L2
0

2
4

3
5; a3 � −

1
J

L2g
∂f
∂r1

L1g
∂f
∂r2

−L1L2

2
4

3
5; �32�

and the Jacobian determinant is

EQ-TARGET;temp:intralink-;;53;665 J � L1L2f
dg
dr3

:

In the numerical scheme, we assume that the mapping
function is only known at the corner points of each grid cell
(see Fig. 1). Derivatives with respect to the mapping function
are then approximated by appropriate combinations of SBP
interpolation and differentiation operators.

NUMERICAL EXPERIMENTS
In this section, we conduct a series of numerical experiments to
determine how to select the timestep, demonstrate the method’s
excellent stability properties, and determine the number of grid
points per minimum wavelength required for resolving body
and surface waves in topographic simulations. In all of the
experiments, we advance in time using leap-frog timestepping.

Timestep selection
In an unbounded isotropic elastic medium, the fourth-order
accuracy in space and second-order accuracy in time of the
SGFD scheme satisfies the following Courant–Friedrichs–Lewy
(CFL) condition (Graves, 1996)

EQ-TARGET;temp:intralink-;df33;53;380Δt<min
Δx���

3
p

Vp�c1� c2�
�Cmin

Δx
Vp

≈0:495min
Δx
Vp

; �33�

in which Δx is the uniform grid spacing (assumed to be the
same in each grid direction), and VP � ��������������

λ� 2μ
p

=
���
ρ

p
is the

P-wave velocity. The condition in equation (33) applies for each
grid point. Moreover, c1 � 9=8 and c2 � 1=24 are the coeffi-
cients of the FD stencil of the first derivative, and C is the
CFL number.

Our model for bounding the maximum stable timestep of the
curvilinear grid method depends on two different thresholds.
The first threshold is an upper bound of the maximum stable
timestep for grid directions or regions not experiencing a curvi-
linear grid transformation (e.g., the horizontal grid directions)

EQ-TARGET;temp:intralink-;df34;53;185Δt < C0 min
Δx
Vp

; �34�

in which C0 > 0 is a constant to be determined. The second
bound restricts the maximum stable timestep due to the curvi-
linear coordinate transformation in the vertical direction

EQ-TARGET;temp:intralink-;df35;53;94Δt < C1 min
h

Vp∥a3∥2
; �35�

in which h � 1=N is the grid spacing discretizing the unit
interval, assuming N � 1 grid points. The norm ∥a3∥2 in
equation (35) depends on the grid stretching, scaling effects,
and the norm of the gradient of the topography function, f :

EQ-TARGET;temp:intralink-;df36;320;692

∥a3∥2 �
1

jf g ′j
������������������������
1� g∥∇f ∥22

q
; ∥∇f ∥2 �

���������������������������������������
∂f
∂x1

�
2
�

�
∂f
∂x2

�
2

s
:

�36�

When ∥∇f ∥2 increases, Δt must decrease. Thus, large topo-
graphic gradients in f negatively impact the maximum stable
timestep and may be poorly resolved on the grid. By combining
the bounds in equations (34) and (35), we arrive at the following
model for estimating the maximum stable timestep in our
simulations

EQ-TARGET;temp:intralink-;df37;320;536Δt < min

�
C0

Δx
Vp

;C1
h

Vp∥a3∥2

�
: �37�

The constants C0 and C1 depend on the type of spatial
discretization used (including the order of accuracy, use of SBP
operators, and penalty terms). Furthermore, C0 can only depend
on the difference operators, whereas C1 can depend on both dif-
ference and interpolation operators.

Because of the complexity of analytical derivation of C0 and
C1 in equation (37), we bound the constants through numeri-
cal experiments from a set of simulations with randomly
chosen topography profiles that range from small to large
∥∇f ∥2. We generate a topography field that follows the von
Karman spectral density function that takes the form

EQ-TARGET;temp:intralink-;df38;320;340PvK�kx; ky� �
2dπd=2ε2axayγ�κ� d=2�

γ�jκj��1� a2xk2x � a2yk2y�κ�d=2 ; �38�

in which d is the Euclidean dimension (d � 2 for a 2D field),
γ is the gamma function, κ is the Hurst exponent (κ � 0:8), ax
and ay are the correlation lengths in the x and y directions, and
ϵ controls the magnitude of the fluctuations. We generate an
isotropic topography field by letting ax � ay � 2000 m. The
magnitude ϵ is irrelevant here because we normalize the gen-
erated topography field to make the elevation values fall
between −1 and 1 m. The normalized model is then stretched
vertically to generate topography fields with increasing maxi-
mum ∥∇f ∥2. Our test models range from a flat topography
(elevation = 0) to one with elevations ranging from −2560
to 2560 m. In each case, we search for the CFL number that
lies on the boundary between a stable simulation and an
unstable simulation. The stable simulations with the largest
CFL number of the largest timestep are the ones that define
the maximum stable timestep in each case. Figure 3 shows
how the maximum stable timestep of each simulation
depends on the ratio of the vertical deformation of the grid
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spacing, due to topography, as a function of the uniform grid
spacing,

EQ-TARGET;temp:intralink-;df39;41;432S � h
Δx∥a3∥2

: �39�

As S increases, the input grid geometry transitions from
exhibiting large to small grid deformations. In the regime of large
grid deformations (small S), the maximum stable timestep
increases proportionally with S at a near-linear rate until it
reaches a maximum, as predicted by equation (37). By applying
a linear fit to the two simulation data points with the smallest S
values, we find C1 ≈ 1:07. This constant is about a factor of 2
larger than the CFL number of the theoretical stability analysis
in equation (33), which holds for a uniform grid in an
unbounded domain. In the regime of small grid deformations,
equation (34) bounds the maximum stable timestep with the
CFL number C0 ≈ 0:48. This result is in good agreement with
the theoretical CFL number C ≈ 0:50 in equation (33).
Therefore, we conclude that the design of the difference opera-
tors and the weakly imposed free surface boundary condition do
not negatively impact the CFL number for uniform grid calcu-
lations in a significant way.

Energy conservation
We confirm that the numerical method is energy conservative by
demonstrating that the energy rate over time fluctuates due to
rounding errors only. The energy rate is numerically computed
at each timestep by evaluating the sum of the kinetic and strain
energy rates introduced in Appendix B. Because we discretize in
time with leap-frog timestepping, these energy rates can be deter-
mined by knowing the numerical solution at the current n� 1

and previous timestep n. In this case, the fully discrete approxi-
mation of the kinetic energy rate in equation (A13) is

EQ-TARGET;temp:intralink-;;308;718

X
i

vTi ρiJiVi
dvi
dt

≈ E
̣
k �

X
i

�vn�1=2
i �TρiViJi

�
vn�1=2
i − vn−1=2i

Δt

�
:

Likewise, the fully discrete approximation of the strain energy
rate in equation (B5) is

EQ-TARGET;temp:intralink-;;308;639

X
i;j

σT
ij ĴijV̂ij

d ϵ ij
dt

≈ E
̣
s �

X
i;j

�σnij�TV̂ijĴij

�
ϵ n�1
ij − ϵ nij
Δt

�
:

The energy rate is E
̣
� E

̣
k � E

̣
s.

To test energy conservation of the numerical method, we
generate a random media and topography using Gaussian
white noise Z ∼N �0; σ� added to a homogeneous background
model. The background model has density ρ � 3:5 g=cm3, P
wavespeed 6 km=s, and S wavespeed VS � 3:5 km=s. We per-
turb the density by adding white noise with standard deviation
σ � 0:05ρ. To guarantee that the stiffness tensor, defined in
equation (A2), is positive definite everywhere, we add the same
white noise realization with standard deviation σ � 0:05VS

to the wavespeeds. To generate the topography profile we
generate white noise with standard deviation σ � 100.

The simulation is initialized by applying a moment tensor
source in the center of the free surface (see the Double
Couple at Depth section for details regarding themoment tensor
source implementation). The only nonzero component of the
moment tensor is m12, and its rate is given by the step function

EQ-TARGET;temp:intralink-;df40;308;367m
̣
12 �

�
M
̣
0 0 < t ≤ t0;

0 t > t0:
�40�

In this experiment, the computational domain is
49.5 km × 49.5 km × 21.12 km excluding topography. We
use M

̣
0 � 1018 Nm=s, t0 � 2:5 ms, grid spacing h � 165 m,

and timestep Δt � 2:5 ms and advance in time until the final
time of 2.5 s. Figure 4 shows that the energy rate at early times
increases due to the constant-amplitude source in equation (40).
Immediately after the time t � 0:25 s, the source vanishes and
the energy rate abruptly approaches zero. At later times, the
energy rate fluctuates around the mean jĒ

̣
j=jĒ

̣

kj ≈ 3:5 × 10−4

due to floating-point single-precision rounding errors.

Gaussian hill and canyon
We investigate the accuracy and stability of our numerical
method using a Gaussian hill and canyon topography profile:

EQ-TARGET;temp:intralink-;df41;308;146f �x1; x2� � L3 � e−�x
2
1�x22� − e−��x1−10�

2��x2−10�2�km �41�

(see Fig. 5). For simplicity, we employ a linear grid stretching
profile that extends to a depth of L3 � 21:12 km. We focus
on two experiments that share similar configurations but test
different aspects of the method: (1) a double-couple source

Figure 3. Normalized maximum stable timestep ΔtVp=Δx as a function of
S � h=�Δx∥a3∥2�. Circles show the normalized maximum stable timestep
obtained from simulations. Solid lines show the bound on the maximum
stable timestep estimated by the equation. The color version of this figure is
available only in the electronic edition.
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buried below the Gaussian hill and (2) a point force applied on
the summit of the Gaussian hill.

In each case, the source time function is the Ricker wavelet
function

EQ-TARGET;temp:intralink-;;53;432 s�t� � �1 − 2π2f 2p�t − t0�2�e−π
2f 2p�t−t0�2 ;

in which f p is the peak frequency and t0 is a time delay that
prevents an abrupt onset. The source parameters and material
properties used in both experiments are listed in Table 1.

To assess the accuracy, we define the minimum wavelength
λmin � VS=fmax using the shear-wave velocity VS and maxi-
mum frequency fmax resolved on the grid. fmax is estimated
using the frequency at which the Ricker wavelet reaches 5%
of its peak amplitude in the frequency domain, ≈2:5f p.

Double couple at depth. We use a double-couple source,
buried 1 km below the summit of the Gaussian hill. In the
Cartesian coordinate system, the source is located at the origin
x � �0; 0; 0�s. The double-couple source is zero for all moment
tensor components mij except for component m12. For this
component, the moment rate is

EQ-TARGET;temp:intralink-;;320;588 m
̣
12 � m

̣
0s�t�:

To handle the moment tensors in our implementation,
we add the source term −M

̣
ij to the right side of equation (14),

in which

EQ-TARGET;temp:intralink-;df42;320;511M
̣
ij �

1
J�r1s ; r2s ; r3s �

m
̣
ijδ�r1 − r1s �δ�r2 − r2s �δ�r3 − r3s �: �42�

In equation (42), rs � �r1s ; r2s ; r3s � is the source location in
parameter space.

This implementation requires finding the mapping of the
physical coordinates to the parameter space coordinates. When
the grid stretching function g�r3� is linear, the solution is trivial.
Otherwise, one can apply Newton’s method to solve for the
parameter space coordinates. The Dirac delta function distribu-
tion applied in each direction is discretized to fourth-order accu-

racy by imposing moment
conditions. If the source term is
close to the boundary, the Dirac
delta distributions must be dis-
cretized using the same quadra-
ture rule as defined by the SBP
operators. Otherwise, the source
discretization is inaccurate.

The receivers are placed in a
5 × 5 grid at the free surface,
which is centered around the
summit of the Gaussian hill
(see Fig. 5). In the horizontal
plane, the receivers are 1 km
apart in each direction.

Because the receiver loca-
tions do not coincide with the
SG field locations, we interpo-
late the velocity field to
each receiver location using
cubic (fourth-order-accurate)
Lagrange interpolation applied
to the four nearest grid points
for each field. The interpolation

Figure 4. Test of energy conservation of the numerical scheme using ran-
domly generated and uniformly distributed media parameters and topog-
raphy elevation profile. Initially, the normalized energy rate increases due to
the presence of a source term. After time t � 0:25 s, the source is no longer
present, and the energy rate fluctuations are due to floating-point single-
precision rounding errors.

Figure 5.Map view of the Gaussian hill and canyon topography in Cartesian coordinates. (a) Location of (a) moment
tensor source buried 1 km below the summit of the Gaussian hill and responses measured on a 5 × 5 grid (circles),
and (b) point force applied on the summit of the Gaussian hill and computation of surface tractions covering the
Gaussian canyon (shaded area). The color version of this figure is available only in the electronic edition.
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takes place in parameter space,
not in physical space. Figure 6
shows good agreement between
the numerical solution obtained
by our code at λmin=h � 6 and
a DG solution EDGE (Breuer
et al., 2017). In this experiment,
we used h � 0:165 km and
timestep Δt � 5 ms.

Surface point force.
Accurate simulation of surface
waves is of great importance in
many practical applications.
To excite surface waves, we
apply a point force on top of
the Gaussian summit by intro-
ducing

EQ-TARGET;temp:intralink-;df43;433;510F�s�t�fδ�x1�δ�x2�; f�
f 1
f 2
f 3

2
4

3
5;

�43�
and impose the traction boun-
dary condition T � F�t� on the
free surface. We discretize the
boundary condition following
the weak imposition of boun-
dary conditions described in
Appendix B. The Dirac distri-
butions are again discretized
by imposing moment condi-
tions to achieve the fourth-
order accuracy.

We set f 1 � 1012 N and the
other force components to zero.
In addition, we set the grid spac-
ing to h � 0:1175 km, corre-
sponding to λmin=h � 8:5 and
λmin;R=h ≈ 7:8 when computing
the minimum wavelength
using the S-wave and Rayleigh
wavespeed (cR ≈ 3:21 km=s),
respectively. The timestep is
the same as in the previous

TABLE 1
List of Source Parameters and Material Properties for the Gaussian Hill Problem

fp (Hz) t0 (s) M
̣

0 (N·m= s) ρ (kg=m3) VS (m= s) VP (m= s)

1.4 1.5 1018 2500 3500 6000

Figure 6. Comparisons of synthetic velocity waveforms computed using EDGE (solid traces) and the proposed curvi-
linear method (dashed traces) with six grid points per minimum S wavelength. The receivers are located along a line
2 km away from the Gaussian summit. The color version of this figure is available only in the electronic edition.
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experiment,Δt � 5 ms. Figure 7 shows the particle velocity field
at the bottom of the Gaussian canyon computed on a coarse
grid and a fine grid with a factor of 4 grid refinement. The gain
of less than 10% in the l2 norm in time when compared against
the fine-grid solution indicates that the coarse-grid results have
already reached a relatively high accuracy in the presence of
surface waves.

Increased accuracy in the modeling of surface waves
by the curvilinear method may be obtained without a
substantial increase in computational cost. The primary con-
tribution to the error is most likely truncation errors present
in the one-sided SBP FD stencils near the boundary. One way
to reduce the boundary error is to introduce a nonuniform
grid stretching function that clusters the grid points closer
toward the boundary, but at the expense of decreasing
the timestep. Another possibility is to raise the order of accu-
racy of the SBP operators to, for example, sixth- or eighth-
order interior accuracy and third or fourth boundary
accuracy.

Boundary error and convergence rates. Because the
exact boundary conditions are known, the weak boundary con-
ditions implemented in the numerical scheme provide an
opportunity to estimate errors and convergence rates. To esti-
mate the error on the boundary, we compare the traction-free
boundary condition T � 0 against the semidiscrete approxi-
mation of the traction vector. Because the scheme is conver-
gent, the semidiscrete approximation of the traction vector
must vanish with grid refinement. To approximate the traction
vector at the position �10� x̃1; 10� x̃2�, we interpolate each
component of the stress tensor to the fourth-order accuracy
and evaluate the unit normal n with respect to the boundary.
In the neighborhood of the Gaussian canyon, the Cartesian
components of the normal are

EQ-TARGET;temp:intralink-;;53;119

n1 � −2jnj−1x̃1e−x̃21−x̃22 ; n2 � −2jnj−1x̃2e−x̃21−x̃22 ; n3 � jnj−1;

jnj �
�����������������������������������������������
4�x̃21 � x̃22�e−2x̃

2
1−2x̃

2
2 � 1

q
:

We quantify the error and convergence rate of the tractions
in the L2 norm using

EQ-TARGET;temp:intralink-;df44;320;457e�t� �

������������������������������������������������P
i

R
Ωc
TiTidSP

i;j

1
tend

R tend
t�0

R
Ωc
σ ijσ ijdSdt

vuuuut : �44�

By discretizing equation (44), we obtain an estimate of the L2

error of the boundary traction as a function of time and
normalized by stresses to obtain a dimensionless quantity.
In the convergence study, the coarsest grid uses λmin=h � 8:5
grid points per minimum S wavelength (or 7.8 grid points
for Rayleigh waves), obtained with h � 0:1175 km and
Δt � 5 ms. The subsequent grids use a factor of 2 grid refine-
ment. The surface patch is Ωc � �8; 12� × �8; 12� km2 and cen-
tered at the bottom of the Gaussian canyon. Figure 8 shows
that the discrete approximation of equation (44) converges
toward zero at a second-order convergence rate. We find that
the error in the tractions is comparable to those estimated for
the particle velocity fields shown in Figure 7. Hence, the error
in tractions could potentially be used as an error control
mechanism to identify which modes are adequately resolved
in a simulation without requiring comparison against fine-grid
or numerical solutions produced by other codes.

Reciprocity. We indirectly demonstrate the energy-conserv-
ing stability properties of our numerical scheme using a reci-
procity test. Usually, one tests energy conservation of fully
discrete approximation by confirming that, in the absence
of sources and sinks, the discrete energy is positive for nonzero
solutions and remains constant for long times. The reciprocity
test does not require any energy computations, which

Figure 7. Particle velocity response measured at the bottom of the Gaussian
canyon due to a point force applied on the summit of the Gaussian hill,
computed using our numerical method at two different resolutions. The
color version of this figure is available only in the electronic edition.
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simplifies its implementation, but it needs to be carefully
designed to be sensitive enough to detect potential instabilities.

Because the linear elastic wave equation is a self-adjoint linear
operator, it follows that its Green’s functions are symmetric in
their arguments, that is, G�x; y� � G�y; x�. Because of the sym-
metry of the Green’s function, it is possible to exchange source
and receiver locations via a property known as reciprocity. Let xs
and xr be source and receiver locations, respectively. Then, reci-
procity implies that the response vk�xr ; t� of a simulation with a
moment tensor source Mij can be reconstructed from a recipro-
cal simulation with a point force Fk�xr ; t� and measuring
strains ϵ �k�ij �xs; t�, using vk�xr ; t� �

P
ijM

̣
ij ϵ

�k�
ij �xs; t�. Because

our method is energy conserving, the numerical Green’s func-
tions are also symmetric, and therefore reciprocity must hold

in the discrete case, independent of accuracy. The implications
of accuracy-independent reciprocity are that the reconstruction
error jvk�xr ; t� −

P
ijM

̣
ij ϵ

�k�
ij �xs; t�j, when normalized, must be

of the same order as floating-point rounding errors and must
hold for any solution.

We demonstrate accuracy-independent reciprocity for a
single component using the following model layout. For the for-
ward simulation, a double couple M12�xs; t� is located at
xs � �10; 10;−1�, and the response v1�xr ; t� is recorded at
xr � �0; 0; 1�. For the reciprocal simulation, the strains
ϵ �1�12 �xs; t� � σ�1�12 �xs; t�=μ are recorded for a point force
F1�xr; t�. Then, reciprocity implies that v1�xr ; t� � σ�1�12 �xs; t�=μ.

Because reciprocity must hold for any solution, we test
using the same setup as before except that we increase the peak
frequency f p by an order of magnitude and use heterogeneous
material properties. This increase causes severely under-
resolved modes to be present in the numerical solutions.
The heterogeneous material properties are defined by adding
a linear perturbation of the form �x� y� z�=h to each of the
homogeneous density and wavespeed parameters. Despite hav-
ing inaccurate numerical solutions, Figure 9 shows that the for-
ward and reciprocal solutions only differ to single-precision
rounding errors. Thus, this test demonstrates the strength of
an energy-conserving method—stability of the numerical
simulations is independent of the accuracy of the numerical
solutions and is guaranteed (as long as the CFL condition is
met) for any type of geometry. In numerical methods lacking
proof of stability, instabilities often occur due to under-
resolved modes that require artificial dissipation or filtering for
suppression. The addition of artificial dissipation or filtering
can stabilize the method, but may compromise accuracy.

Complex media and topography
The final verification test for our numerical method is a com-
parison with the solution by SPECFEM3D (Komatitsch and
Vilotte, 1998; Komatitsch and Trump, 1999) for a highly

Figure 8. The L2 norm of the discrete traction vector as a function of time
measured over the patch Ωc on the boundary, computed at three different
grid resolutions. For a stable and weak imposition of the traction-free
boundary condition, the discrete traction vector vanishes with grid
refinement when h → 0. The color version of this figure is available only in
the electronic edition.

Figure 9. Reciprocity test using under-resolved numerical solutions computed
in floating-point single precision. Because of having a provably stable
method, the relative reconstruction error is exclusively determined by single-

precision rounding error. The color version of this figure is available only in
the electronic edition.
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complex model with irregular topography. SPECFEM3D has
been successfully applied to wave propagation simulations with
complex surface topography directly incorporated into the
spectral element mesh (Lee et al., 2009). Here, we use a model
of dimensions 65 km3 with topography following a 2D iso-
tropic von Karman power spectrum (equation 38) with a cor-
relation length of 2 km (see Fig. 10, center). The topography

Figure 10. Comparisons of synthetic velocity waveforms computed using
SPECFEM3D (solid traces) and the proposed curvilinear method (dashed
traces) with six grid points per minimum S wavelength at receivers shown by
the triangles on the map at the center. The shading of the map depicts the
complex topography for the simulation; the star depicts the epicenter of the
point source. The color version of this figure is available only in the electronic
edition.
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field is scaled to produce elevation values between −500 and
500 m. The topography is added on top of a heterogeneous
medium, which is built by perturbing the top 9 km of a homo-
geneous background velocity structure (VP � 6000 m=s,
VS � 3464 m=s, and ρ � 2700 kg=m3) with a 3D von Karman
noise field (10% standard deviation and correlation lengths of
1000 and 5000 m along vertical and horizontal directions,
respectively). The mesh for the SPECFEM3D simulation is
built with sufficiently high resolution to accurately describe the
complex topographic interface and to ensure the convergence
of the numerical solution. We use a constant intrinsic attenu-
ation model for the test: QP � QS � 50. The simulation is ini-
tialized by a point source with an isotropic moment tensor
(m11 � m22 � m33 � 1:81015 N · m), located 1 km below the
z � 0 level, near the center of the model. The source-time
function is a Ricker wavelet with a maximum frequency
of 2 Hz.

We compare the waveforms from the two solutions at
receivers located 15–20 km from the source (see Fig. 10,
center). To minimize location errors caused by the SG mesh,
we discretize the source to fourth-order accuracy and interpo-
late the particle velocities at the receiver locations to fourth-
order accuracy. The waveform comparisons show that the
solution computed with our proposed method with a grid
spacing of Δx � 300 m (six points per minimum S wave-
length) is comparable to the reference solution at all receiver
locations (Fig. 10). Additional tests with smaller grid spacings
ensure the convergence of the numerical solution; thus the

results indicate that our proposed curvilinear grid method
provides sufficient accuracy in models with complex crustal
structure as well as topography using at least six points per
minimum S wavelength, at least for the propagation distances
used here.

DISCUSSION AND CONCLUSIONS
We have implemented and verified support for complex topog-
raphy in the high-order scalable AWP-ODC SGFD code using
a curvilinear grid approach. AWP-ODC solves the 3D elasto-
dynamic equations, including frequency-dependent anelastic-
ity (Withers et al., 2015) using memory variables. As opposed
to many other proposed methods to incorporate topography
into SGFD codes, our method is provably stable and therefore
capable of handling any smooth topography without produc-
ing instability. In addition, the method requires relatively few
points per minimum wavelength.

The Cartesian grid-based version of AWP-ODC has been
extensively optimized and shows near-perfect scaling on
thousands of GPUs (Cui et al., 2013). Figure 11 shows a weak
scaling test of curvilinear grid AWP with topography up to
1014 V100 GPUs on Oak Ridge Leadership Computing
Facility Summit at 94% efficiency. This test uses a subdomain
size of 300 × 1620 × 1280 grid points per node, or
150 × 540 × 1280 grid points per GPU. We selected this size
by finding the maximum workload that fits onto a single GPU
and varying the dimensions to find the configuration that
yielded the best performance for a realistic application problem
with 1280 grid points in the depth direction.

We have shown that our curvilinear approach to incorpo-
rate topography in high-order SGFD schemes does not nega-
tively affect the maximum stable timestep on uniform grids.
We constructed a simple model that bounds the maximum sta-
ble timestep depending on the magnitude of the contravariant
basis in the vertical direction. This base vector depends on ver-
tical grid cell stretching and spatial gradients in the topography
profile. For sufficiently large spatial gradients, the maximum
stable timestep has about a factor of 2 larger CFL number com-
pared with the uniform grid case. This is because the terms in
the scheme involving spatial gradients are discretized by com-
bining interpolation and differentiation operators. The appli-
cation of interpolation and differentiation in the same grid
direction produces a wide and central collocated FD operator
(O’Reilly and Petersson, 2020). Central collocated FD opera-
tors are less accurate than staggered operators, and they
are prone to spurious oscillations due to inferior numerical
dispersion properties. However, we have not encountered any
spurious oscillations in our simulations with a broad range of
realistic topographic variations. A possible future extension
would involve replacing the collocated central stencils with
compatible upwind stencils to suppress spurious oscillations
while preserving discrete energy conservation in the numerical
scheme (Mattsson and O’Reilly, 2018).

Figure 11. Weak scaling test of AWP conducted on Oak Ridge Leadership
Computing Facility (OLCF) Summit. AWP achieves 94% weak scaling
efficiency. The color version of this figure is available only in the electronic
edition.
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Nonlinear soil effects and fault-zone plasticity can strongly
reduce ground-motion amplitudes for large earthquakes,
even at longer periods, as demonstrated by Roten et al.
(2014, 2016). Although the curvilinear grid AWP code does
not currently include support for nonlinear rheology, such
extension should be the focus of future work. Because
evaluating the yield condition requires information on
all components of the stress tensor, the staggering of the
stress components complicates the implementation of
plasticity even for planar surfaces (Roten et al., 2016).
Implementations of simple J2 plasticity (based on a von
Mises or Drucker–Prager yield condition) will need to
account for the stretching of the grid along the vertical axis
during interpolation of stress tensor elements from adjacent
grid locations. Future implementations of J2 plasticity in the
curvilinear grid AWP code could be further developed into
multisurface Iwan-type plasticity (Iwan, 1967), as has been
done in the version of AWP with a horizontal free surface
boundary condition (Roten et al., 2018).

DATA AND RESOURCES
Plots and analysis in this article used the numeric computing environ-
ment MATLAB (www.mathworks.com, last accessed October 2020).
SPECFEM3D was obtained from https://geodynamics.org/cig/
software/specfem3d/#release (last accessed August 2021). EDGE
was downloaded from https://github.com/3343/edge (last accessed
August 2021). We provide example codes and summation-by-parts
(SBP) operators in the repository available at github.com/ooreilly/
sbp (last accessed August 2021).
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APPENDIX A
Energy balance
The elastic wave equation satisfies a mechanical energy balance
that relates the total rate of energy change for an elastic
medium to work done by external forces. If all of the bounda-
ries are treated as traction-free surfaces, then the system’s
energy is conserved. When the boundary conditions are weakly
imposed, the penalty parameter α in equation (16) can prevent
the energy balance, unless appropriately chosen. We show here
that α � 1 conserves energy.

To define the mechanical energy of an isotropic elastic
medium, it is convenient to first define the strain rate tensor,
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Stresses are related to strains and vice versa via Hooke’s law
and its inverse relationship,
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X
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Sijklσkl; �A2�

in which Cijkl is the stiffness tensor and Sijkl is the compliance
tensor. For an isotropic elastic material, the time derivative of
Hooke’s law and its inverse relationship (without time deriva-
tive) are
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The total mechanical energy for a linear elastic medium is the
sum of its kinetic energy and strain (potential) energy
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Because J > 0, σ ij ϵ ij �
P

k;lσ ijSijklσkl , E > 0 for nonzero solu-
tions implies that the compliance tensor is symmetric and
positive definite.
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We weakly impose the traction-free boundary condition on
the entire boundary. By orthogonality (equation 6), the normal
on the top boundary can also be expressed as

EQ-TARGET;temp:intralink-;dfa6;41;705n � Ja3

ja1 × a2j
; r3 � 1: �A6�

Using equation (A6), the traction vector is expressed in terms of
the contravariant basis for a given side rk � 0; 1 of the unit cube,
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In equation (A8), Ak � jai × ajj, for i ≠ j ≠ k. The positive and
negative signs in the traction vector come from the sign of the
nonzero component of the outward unit normal with respect to
each side rk � 0; 1 of the unit cube. In the discrete case, we see
that it is more convenient to work with a nonnormalized traction
vector
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By expressing the lifting operator relation equation (17) in
arithmetic form, we get
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in which the dAk � Πl≠kdrl is defined with respect to each side
of the unit cube. The outward pointing unit normal changes
sign depending on the side on which it acts. Thus,
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We have the following result.
Lemma 1. If α � 1, the elastodynamic equations (12) and

(15), subject to the weak boundary condition in equation (16)
conserve the energy in equation (A5) for all times t ≥ 0.

Proof. Differentiating equation (A5) with respect to t leads to
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By inserting equation (15) into equation (A12), the kinetic
energy rate is
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By inserting equation (A1) into equation (A12), the strain energy
rate is
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Combining equation (A13) and equation (A14) results in
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In equation (A15), the first summand on the right side has been
transformed using the product rule. By the fundamental theorem
of calculus,
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and the lifting operator equation (A11), the energy rate is solely
determined by work done on the exterior boundaries
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Thus, the energy is conserved for t ≥ 0 if α � 1.

APPENDIX B
Energy balance of the semidiscrete problem
In this Appendix, we show that the traction-free boundary
condition can be imposed by a simple modification of the sum-
mation-by-parts (SBP) operators in the momentum balance
equation and that the numerical scheme satisfies an energy
balance that mimics that of the continuous problem. A
semidiscrete approximation of equation (11) is

EQ-TARGET;temp:intralink-;dfb1;308;263ρi
dvi
dt

� J−1i
X
k;j

DkGijkσ ij − si; Gijk �
� �Jajj�ij k � j
Pk�Jakj�iPi k ≠ j

:

�B1�

This formulation splits the terms into two types: diagonal terms
that can be discretized without any interpolation (k � j) and
nondiagonal terms that must be interpolated (k ≠ j).

Discretizing the lift operator definition (equation 17) and
nonnormalized traction vector (equation A9) results in the fol-
lowing penalty term:
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The boundary matrix Bk takes the sign of the nonzero compo-
nent of the outward pointing normal with respect to each side.
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By inserting equation (B2) into equation (B1), the penalty
term is absorbed into the difference operators
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The SBP property (equation 24) can then be written as
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Following the same recipe, we can discretize the constitutive
law (equation 12) (omitted for brevity). To derive the energy
balance of the semidiscrete approximation, it is more
straight-forward to work with the strain rate relationship
(equation A1), which we discretize by
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�J�−1ij ĜjikD̂kvj;
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We approximate the mechanical energy (equation A5) by
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The diagonal matricesVi and V̂ij are cubatures that contain the
SBP quadrature weights at each grid location of the respective
velocity and stress components
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The energy Eh of the semidiscrete approximation satisfies
the following result.

Lemma 2. The semidiscrete approximation in equations (B1)
and (B5), with penalty term in equation (B2), conserves the
energy (equation B6).

Proof. To simplify the analysis, we only consider the
nondiagonal terms (k ≠ j) in equations (B3) and (B5).
Differentiating equation (A5) with respect to t and inserting
equation (B1) into the result leads to kinetic energy rate
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and inserting equation (B5) into the result leads to the strain
energy rate
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By applying the SBP interpolation property (equation 25)
twice, we can interchange the cubature and interpolation oper-
ators to obtain
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By taking the transpose, we find

EQ-TARGET;temp:intralink-;dfb11;320;417

X
i;j

σTij ĴijV̂ij
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We add the discrete kinetic and strain energy rates
(equations B9 and B11) together to obtain the total mechanical
energy in the system. Because of the SBP property in
equation (B4), the discrete kinetic and strain energy rate
balance each other
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