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Short Notes

Accuracy of the Explicit Planar Free-Surface Boundary Condition

Implemented in a Fourth-Order Staggered-Grid Velocity-Stress

Finite-Difference Scheme

by E. Gottschämmer and K. B. Olsen

Abstract We compute the accuracy of two implementations of the explicit planar
free-surface boundary condition for 3D fourth-order velocity-stress staggered-grid
finite differences, 1/2 grid apart vertically, in a uniform half-space. Due to the stag-
gered grid, the closest distance between the free surface and some wave-field com-
ponents for both implementations is 1/2-grid spacing. Overall, the differences in
accuracy of the two implementations are small. When compared to a reflectivity
solution computed at the staggered positions closest to the surface, the total misfit
for all three components of the wave field is generally found to be larger for the free
surface colocated with the normal stresses, compared to that for the free surface
colocated with the xz and yz stresses. However, this trend is reversed when compared
to the reflectivity solution exactly at the free surface (the misfit encountered in
staggered-grid modeling). When the wave field is averaged across the free surface,
thereby centering the staggered wave field exactly on the free surface, the free-surface
condition colocated with the xz and yz stresses generates the smallest total misfit for
increasing epicentral distance. For an epicentral distance/hypocentral depth of 10,
the total misfit of this condition is about 15% smaller than that for the condition
colocated with the normal stresses, mainly controlled by the misfit on the Rayleigh
wave.

Introduction

The numerical treatment of the free surface in finite-
difference (FD) methods has received considerable attention
in the literature. The majority of these publications concern
the treatment of irregular free surfaces, in order to simulate
the effects of topographic scattering (e.g., Robertsson, 1996;
Ohminato and Chouet, 1997; Hestholm and Ruud, 1998).
However, while these methods allow the flexibility of in-
cluding mountain topography, they also generally require a
relative dense sampling of the wave field for accurate results.
For example, Ohminato and Chouet (1997) find that 25
points per wavelength are required for stable and accurate
results using their irregular free surface. In the cases where
effects of surface relief are expected to be negligible,
namely, for long-period waves propagating in areas of
smooth topography, it is possible to formulate an explicit
boundary condition valid for a planar surface (e.g., Graves,
1996; Levander, 1988). The advantage of these formulations
are generally that they require less points per wavelengths
compared with those for irregular free-surface boundary
conditions, namely, the explicit planar condition by Levan-

der (1988) that is accurate for only 5 points per wavelength.
Clearly, the explicit free-surface condition should be con-
sidered for numerical reasons in situations where applicable.

The velocity-stress staggered-grid FD method, in partic-
ular the 3D 2–4 implementation (second-order accurate in
time and fourth-order accurate in space) has become increas-
ingly popular for simulating ground motion, both for kine-
matic (e.g., Olsen, 1994; Olsen et al., 1995; Olsen and Ar-
chuleta, 1996; Graves, 1998; Wald and Graves, 1998; Olsen,
2000; Olsen et al., 2000) and dynamic (e.g., Olsen et al.,
1997; Peyrat et al., 2001) methods. These studies all used
an explicit, planar free-surface boundary condition, which
was found superior in accuracy compared to the vacuum
formulation (e.g., Graves, 1996). The explicit planar free-
surface condition typically requires two (nonphysical) grid
planes above the free surface (Graves, 1996).

There are two different possibilities for the implemen-
tation of the explicit free-surface boundary condition in the
staggered grid, 1/2 grid points apart vertically. Graves
(1996) described the implementation colocated with the nor-
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Figure 1. Staggering of the wave field parameters.

mal stress positions, hereafter denoted FS1. It is also possible
to implement the free surface colocated with the xz and yz
stresses, offset 1/2 grid vertically from the Graves (1996)
implementation (hereafter denoted FS2). While the ground
motion and rupture dynamics simulations listed above in-
clude both implementations of the free-surface boundary
condition, differences in accuracy have to our knowledge
not been documented.

This study contains an analysis of the relative accuracy
of the planar free-surface boundary conditions FS1 and FS2.
The main incentive for our study is a preliminary test that
we carried out in the Southern California Earthquake Center
(SCEC) 3D velocity model, showing significant differences
between long-period ground-motion synthetics computed
using the two different boundary conditions for planar free
surfaces, in particular for sediment sites. These differences
were comparable to the error expected from unaccounted
topographic effects due to the use of a planar free surface.
Lacking an analytical solution for the heterogeneous model,
we attempted to validate the synthetics against strong-
motion data. Unfortunately, due to the resolution of the
model and an artificially imposed minimum velocity due to
computational limitations, the fit of the synthetics to the data
were not significantly improved by either free-surface con-
dition. However, the result demonstrated that the choice of
the two free-surface boundary conditions makes a difference
for a realistic earth model.

Part of the discrepancy between the exact ground mo-
tion at the free surface and that for the explicit free-surface
boundary conditions is due to the positioning of some com-
ponents of the wave field 1/2 grid points below the surface
for the staggered grids. It is not obvious to what extent, if
any, the wave field at the two grid planes above the free
surface can be used to minimize the misfit due to the location
of some components 1/2 grid points below the free surface.
In this article, we investigate the possibility of averaging the
wave field across the free surface in order to increase the
accuracy of the numerical solution at the free surface.

Explicit Free-Surface Boundary Condition

We use a fourth-order staggered-grid FD scheme to
solve the 3D elastic equations of motion (Olsen, 1994;
Graves, 1996) (Fig. 1). The absorbing boundaries were
moved far enough away to avoid any artificial reflections.

The source is implemented in the FD grid by adding

˙!DtM (t)/V (1)ij

to rij(t) where Ṁij(t) is the ijth component of the moment
rate tensor for the earthquake, V " dx3 is the cell volume,
and rij(t) is the ijth component of the stress tensor on the
fault at time t (Olsen et al., 1995).

At the free surface, we must satisfy

s " s " s " 0. (2)zz xz yz

We examine the accuracy of the explicit, planar free-
surface boundary condition colocated with the normal
stresses (sxx, syy, szz) (FS1) and that colocated with the shear
stresses sxz and syz (FS2) (see Fig. 1). For implementation
FS1, the horizontal velocities vx and vy are located exactly
at the free surface, while the vertical velocity vz is located
1/2 grid point below. For implementation FS2, the horizontal
velocities vx and vy are positioned 1/2 grid point below the
free surface, while the vertical velocity vz is located exactly
at the surface. Our coordinate system is right handed, with
the z axis positive downward.

Free-Surface Boundary Condition FS1

Implementation FS1 was described by Graves (1996).
His equations (15) and (16) are summarized in this section.
Let the free surface be located at vertical index k. szz is lo-
cated at the surface and is explicitly set to zero:

ks " 0. (3)zz

szz, sxz, and syz above the free surface are obtained using
antisymmetry:

k!1 k#1s " !s ,zz zz
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Table 1
Modeling Parameters

Spatial discretization (m) 100
Temporal discretization (sec) 0.0075
Number of E–W grid points 750
Number of N–S grid points 750
Number of vertical grid points 297
Number of timesteps 1112
Simulation time (sec) 8.34

k!1/2 k#1/2 k!3/2 k#3/2s " !s , s " !s ,xz xz xz xz

k!1/2 k#1/2 k!3/2 k#3/2s " !s , and s " !s . (4)yz yz yz yz

sxx, syy, and sxy are not used above the free surface. Using
equations (2) and (3), we can derive the following difference
equations for the velocity at and above the free surface:

!kk k kD v " [D v # D v ]z z x x y yk # 2l

k!1/2 k#1/2[D v # D v ] " ![D v # D v ]z x x z z x x z

k!1/2 k#1/2[D v # D v ] " ![D v # D v ] (5)z y y z z y y z

where represents a centered, second-order approximationnDl

to the differential operator !/!l in direction l direction at
vertical level n.

For implementation FS1, special attention must be
given to the computation of the horizontal normal stresses
(sxx and syy) at the surface, because they involve the vertical
velocity at 3/2 grid points above the surface. This value is
usually not solved by the previous second-order difference
equations (Graves, 1996). The most obvious choice is to use
second-order accuracy in the computation of the vertical de-
rivatives of the horizontal normal stresses at the free surface
for FS1, which is the implementation that we will discuss
subsequently. We also tested the accuracy of using fourth-
order accuracy and simply setting vz " 0 at 3/2 grid points
above the surface. However, the accuracy of the latter im-
plementation was worse than the former everywhere.

Free-Surface Boundary Condition FS2

Implementation FS2 is defined by locating the surface
at k ! 1/2, namely, 1/2 grid point vertically apart from im-
plementation FS1:

k!1/2 k!1/2s " s " 0. (6)xz yz

szz, sxz, and syz above the free surface are obtained using
antisymmetry:

k!1 ks " !szz zz

k!3/2 k#1/2s " !s (7)xz xz

k!3/2 k#1/2s " !s .yz yz

Again, sxx, syy, and sxy are not used above the free surface.
Using equations (5) and (6) we can derive the following
difference equations for the velocity at and above the free
surface:

k!1 k!1(k # 2l)[D v ] # k[D v # D v ] "z z y y x x

k k!(k # 2l)[D v ] # k[D v # D v ]z z y y x x

k!1/2 k!1/2D v " !D v (8)z x x z

k!1/2 k!1/2D v " !D v .z y y z

Accuracy Tests

Source and Receiver Configuration and Model
Description

We used a double-couple point source with a rise time
of 0.1 sec inserted at (0 m, 0 m, 2000 m) in a uniform half-
space model, with a compressional wave speed of 6.0 km/
sec, a shear-wave speed of 3.464 km/sec and a density of
2.7 g/m3. The only nonzero moment tensor component was
Mxy (equal to Myx), which had the value M0 " 1018 N m.
The moment M(t) and moment rate Ṁ(t) time histories were

t !t/TM(t) " M • 1 ! 1 # • e (9)0 ! ! " "T

and

t !t/TṀ(t) " M • • e , (10)0 ! 2"T

respectively, where t is time and T is the rise time. For FS1,
the source is naturally located at 2 km depth, while for FS2
we approximated the source by the average between xy (0
m, 0 m, 2050 m) and xy (0 m, 0 m, 1950 m). We computed
the synthetic velocity time histories at the surface point
(i•600 m, 1•800 m, 0 m), i " 1 . . . , 20, namely; the receivers
are located along a line oriented at angle 53.13" (i.e., tan!1

(4/3)) to the x axis. We deconvolve the source–time function
from the ground-motion time histories and convolve with a
Gaussian-shaped function corresponding to approximately 6
points per shear wavelength with Vs " 3.464 km/sec and
dx " 100 m. No attenuation was included in the simulations.
The modeling parameters are summarized in Table 1.
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Numerical Results

Two sets of comparisons are of relevance in order to
measure the accuracy of the FD free-surface boundary con-
ditions. The first is to address the true misfit of the condi-
tions, where the FD solutions are compared to reflectivity
solutions computed at the positions of the staggered wave-
field components. These positions are 1/2 grid point below
the actual free surface for some components because of the
staggered grid. The other is to measure the actual misfit,
where the FD solutions are always compared to the reflec-
tivity solutions at the free-surface position. The actual misfit
is what is generally encountered in reality and includes the
true misfit and the misfit introduced by the fact that some
parameters are located 1/2 grid point below the surface. We
use the method of Bouchon (1981) to compute the reflectiv-
ity solution.

Figure 2 shows the misfit of the velocity time histories
(SCH) for the two FD free-surface boundary conditions com-
pared to the reflectivity solution. The misfit is measured as

2(S(t) ! S(t) )#$ REFL FDt
(11)

2S(t)#$t REFL

for the radial, transverse, and vertical components, and for
the three components combined. The true misfit is shown in
the left column of Figure 2. The misfit is similar and small
for the transverse component (#0.03 at an epicentral dis-
tance divided by the hypocentral depth [EDHD] of 10), while
the appearance of the Rayleigh wave causes that for the ra-
dial (32%) and vertical (20%) components as well as the
total misfit (22%) here to be smaller for FS2 compared to
that for FS1.

The actual misfit is shown in the middle column of
Figure 2. At 10 EDHD, FS1 (misfit # 0.15) is superior to
FS2 (misfit # 0.1) for the horizontal components (located
at the surface for FS1, 1/2 grid point below for FS2), while
FS2 (misfit 0.093) is more accurate than FS1 (misfit 0.12)
for the vertical component (positioned at the surface for FS2,
1/2 grid point below for FS1). The misfit for FS2 is much
larger than that for FS1 close to the epicenter. FS1 is gen-
erally more accurate than FS2 when all components are con-
sidered.

Figure 3 shows comparisons of the reflectivity solution
to the FD solutions and the misfit for the two implementa-
tions of the free-surface boundary condition. The residuals
are enhanced by a factor of 5 for site 1 for clarity, while the
actual residuals are displayed for site 20. The largest (actual)
misfit at site 1 (#0.1, see Fig. 2) appears on the horizontal
components for FS2. Figure 3 reveals that this misfit is
mainly due to a slightly early arrival of the P and S waves.
This timing misfit is in part due to the necessity of averaging
the source across grid lines between 1950 and 2050 m, which
transfers energy toward earlier (and later) times. However,
the fact that the horizontal components here are positioned

1/2 grid point below the surface is by far the largest reason
for the slightly early arrival for the FS2 horizontal motions
at site 1. The vertical component for FS2 is positioned at the
free surface and shows a much smaller misfit. At site 20, by
far the largest part of the total misfit is due to the Rayleigh
wave (about 0.27 actual misfit for FS2). The largest misfit
is indeed expected to be related to the surface waves, which
are generated at and propagating close to the free surface.
While FS2 is overall more accurate than FS1 (0.18 versus
0.24 true misfit) the staggered positions increase the actual
misfit for FS2 at site 20.

As mentioned previously, FS1 requires the use of sec-
ond-order accuracy in the computation of the vertical deriv-
atives of the horizontal normal stresses at the free surface.
Here, we find no significant improvement in the error,
whether second-order or fourth-order accuracy is used for
the horizontal derivatives of these parameters.

Refinement of FS1 and FS2

Finally, we attempt to improve the accuracy of the two
boundary conditions compared to the actual misfit. The ob-
vious suggestion is to average the components that are po-
sitioned 1/2 grid point below the free surface with those
located 1/2 grid point above the free surface. However, the
validity of this procedure is not clear because it involves
nonphysical parameters positioned virtually above the sur-
face. On the other hand, the conditions for FS1 and FS2,
equations (6) to (8), imply symmetry of the particle veloci-
ties across the free surface. The misfit of the averaged pa-
rameters is shown in the right column of Figure 2. We obtain
a misfit up to three times smaller for the averaged seismo-
grams compared to those at locations 1/2 grid point below
the surface. When averaged, the total misfit is similar
(#0.07) for FS1 and FS2, less than 3 EDHD, while the total
misfit at 10 EDHD is about 15% smaller for FS2 than that
for FS1. This is mainly due to a more accurately modeled
Rayleigh wave for FS2 than for FS1 (see below).

Figure 4 shows comparisons of the reflectivity solution
to the FD-averaged (where applicable) solutions and the dif-
ferences between the two different free-surface boundary
conditions at sites 1 (0.5 EDHD) and 20 (10 EDHD). The
averaged seismograms clearly show an improved fit com-
pared to the reflectivity solution.

We estimated the required amount of cpu time to be
10% smaller for FS2 compared to that for FS1. However, it
should be noted that this estimate includes differences in the
internal FD update near the free surface for the two ap-
proaches, in addition to the cost within the free-surface
routines.

Conclusions

We have tested the accuracy of two explicit planar free-
surface boundary conditions for the 3D fourth-order velocity-
stress staggered-grid FD method, implemented 1/2 grid point
apart in the vertical direction. The accuracy of the imple-
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Figure 2. Accuracy of the two implementations of the free-surface boundary con-
dition. Misfit for left column: reflectivity solution at staggered positions (true misfit);
middle column: reflectivity solution at the free surface (actual misfit); and right column:
reflectivity solution at the free surface and averaged FD results (modified actual misfit).
Solid and dashed lines depict the misfit for FS1 and FS2, respectively (see text).

mentations is estimated as the fit between the seismograms
from the FD solutions and those computed by a reflectivity
method for a uniform half-space model. First, the misfit is
estimated using reflectivity solutions at the vertical positions
where the FD seismograms are computed, which due to the
staggered grid are located 1/2 grid point below the free sur-
face for some components. At 10 EDHD, the misfit is similar
and small for the transverse component (#0.03), while the
appearance of the Rayleigh wave causes the misfit for the

radial and vertical components as well as the total (added
for all three components) misfit to be about 22% smaller for
FS2 compared to that for FS1.

Then we estimated the misfit using reflectivity solutions
at the free surface, namely, a measure including the misfit
due to some components positioned 1/2 grid point below
the free surface, which is the misfit that is encountered in
reality. At 10 EDHD, FS1 (misfit # 0.1) is superior to FS2
(misfit # 0.15) for the horizontal components (located at
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Figure 3. Comparison of surface velocity time histories for the two implementations
of the FD free-surface condition discussed in the article (FS1 and FS2, long dashed
traces) to the reflectivity solution (solid traces, actual misfit). The short dashed line
shows the difference between the reflectivity and FD solutions. The difference is mul-
tiplied by 5 for site 1, while the actual difference is shown for site 20.

the surface for FS1, 1/2 grid point below for FS2), while
FS2 (misfit 0.093) is more accurate than FS1 (misfit 0.12)
for the vertical component (positioned at the surface for
FS2, 1/2 grid point below for FS1). In addition, the misfit
for FS2 is much larger than that for FS1 close to the epi-
center. FS1 is generally more accurate than FS2 when all
components are considered.

Finally, we proposed to compute a more accurate esti-
mate of the FD seismograms for the components positioned

1/2 grid point away from the free surface by a simple average
between the values immediately above and below the sur-
face. We obtained a misfit up to three times smaller for the
averaged seismograms compared to that for the unaveraged
seismograms at locations 1/2 grid point below the surface.
When averaged, the total misfit is similar (#0.07), less than
3 EDHD, while the misfit is about 15% smaller for FS2 than
that for FS1 at 10 EDHD, mainly due to a more accurately
modeled Rayleigh wave for FS2. Our recommendation is to
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Figure 4. Same as Figure 3, but averaged seismograms are shown when applicable.

use the averaged FS2 that generally produces the most ac-
curate results.
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