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Fréchet Kernels for Imaging Regional Earth Structure Based

on Three-Dimensional Reference Models

by Li Zhao, Thomas H. Jordan, Kim B. Olsen, and Po Chen

Abstract High-resolution images of three-dimensional (3D) seismic structures are
not only of scientific interest, but also of practical importance in predicting strong
ground motion after large earthquakes. Given the source and station distributions,
resolutions in current regional seismic tomography studies have been limited by two
types of simplifying practices: the adoption of high-frequency approximations such
as the ray theory and the use of one-dimensional (1D) reference (starting) models.
We have developed a new approach to compute accurate finite-frequency 3D Fréchet
(sensitivity) kernels of observed travel time and amplitude anomalies relative to 3D
reference models. In our approach, we use a fourth-order staggered-grid finite-
difference method to model the seismic-wave propagation in 3D media, and the
reciprocity property of the Green’s tensor to reduce the number of numerical simu-
lations. This approach accounts for the perturbations in compressional- and shear-
wave speeds in the same way, leading to a capability of inverting for the shear-wave
speed directly from seismic data. The algorithm is readily parallelized to allow for
realistic regional high-resolution 3D tomography inversions. We have implemented
the algorithm for the Southern California Earthquake Center (SCEC) Community
Velocity Model, SCEC CVM 3.0, a complex 3D model for Southern California in-
cluding a number of sedimentary basins. By enabling the inversion of 3D structural
perturbations to 3D reference models, our approach provides a practical means of
iteratively solving the nonlinear regional tomography problems.

Introduction

Reliable prediction of strong ground motion following
large earthquakes is essential in assessing earthquake haz-
ards and taking precautionary measures in order to reduce
the human and property losses from earthquakes. In recent
years, with the advancement in high-performance comput-
ing, seismologists have developed computer codes using a
variety of numerical algorithms such as finite-difference
(e.g., Frankel and Vidale, 1992; McLaughlin and Day, 1994;
Olsen, 1994; Graves, 1996; Aoi and Fujiwara, 1999; Kristek
et al., 1999), finite-element (e.g., Bao et al., 1998; Aagaard
et al., 2001), pseudospectral (e.g., Tessmer et al., 1992; Igel,
1999) and spectral-element (e.g., Komatitsch and Vilotte,
1998; Komatitsch et al., 2004) methods to simulate the com-
plete time history of the ground motion with the purpose of
providing a numerical shake table for engineers.

The accuracy of the simulated strong ground motion
depends heavily on a realistic regional earth model. The
ground motion can be greatly influenced by the three-
dimensional (3D) subsurface seismic structures, most nota-
bly in a sedimentary environment such as the Los Angeles
Basin (Fig. 1), where the seismic ground motion is amplified
not only by the relatively soft sedimentary material, but more

importantly through the trapping of basin edge generated
reflected and/or refracted waves inside the basin and the con-
structive interference of these waves (e.g., Kawase, 1996;
Graves et al., 1998; Pitarka et al., 1998; Davis et al., 2000;
Olsen, 2000). In addition, mapping the small-scale structural
variations in and around the basin is also important to study-
ing the source properties of the numerous small local earth-
quakes.

Up to now, 3D studies of the structure in the L.A. Basin
and vicinity have primarily been focused on the P-wave
speed and coming from three sources: travel-time tomogra-
phy (e.g., Kohler, 1997; Hauksson, 2000), linear-array
active-source surveys (Fuis et al., 2001; Godfrey et al.,
2002), borehole as well as sedimentary age-depth data (Mag-
istrale et al., 1996; Magistrale et al., 2000), and industry-
data analysis (Süss and Shaw, 2003). Thus, the currently
available L.A. Basin regional models either do not have suf-
ficient spatial resolution or do not cover the entire region.
The Southern California Earthquake Center Community Ve-
locity Model (SCEC CVM) is created by adopting the re-
gional tomography result of Hauksson (2000) as the back-
ground model and using the borehole and sedimentary
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Figure 1. Map of the region around the Los Angeles Basin. The basin depths in
meters are indicated by the grayscale. Beach balls show the locations and focal mech-
anisms of four earthquakes. Each earthquake has a seven-digit ID number assigned by
the Southern California Earthquake Data Center where we obtained the recorded seis-
mograms and the earthquake catalog. Triangles indicate the four California Integrated
Seismic Network stations. The box shows the boundary of the region in which we
conduct the calculations. The solid, dashed, and dotted lines are the paths for which
numerical results are presented.

age-depth based structure for the basins (Magistrale et al.,
2000; Kohler et al., 2003). Furthermore, the shear-speed
models in all the studies cited above are not constrained by
the data but are derived from the P-wave speeds through
certain scaling relations between the two wave speeds. As a
result, the current models are still insufficient for the predic-
tion of regional high-resolution strong-motion maps that can
lead to effective earthquake hazard analysis. Nevertheless,
regional models such as the SCEC CVM do perform very
well in predicting waveforms of the initial P wave up to a
frequency of 1 Hz at most SCSN stations (P. Chen et al.,
unpublished results, 2005) and even some of the shear-
dominated waves at periods as short as 6 sec (Komatitsch
et al., 2004). The performance of the hybrid models is en-
couraging because they can serve as the reference models
from which we can make phase and amplitude observations
that can be used to refine the models through inversions. The
purpose of this study is to develop an algorithm in order to
accurately compute the Fréchet kernels that linearly relate
the phase and amplitude measurements to perturbations of
the seismic structure from the reference models. Such an
algorithm will enable us to conduct seismic tomography in

a fully 3D manner: inverting for 3D earth structure using
accurate 3D Fréchet kernels computed in 3D reference mod-
els. This new fully 3D approach eliminates the high fre-
quency and structural averaging approximations that are
ubiquitous in current tomography studies and therefore pro-
vides a suitable tool of structural imaging for the USArray
component of the EarthScope project.

Seismic Waveform Analysis

The waveforms recorded at seismic stations contain in-
formation on both the earthquake source that emits the seis-
mic waves and the medium in which the waves propagate.
By analyzing the waveforms, one can make quantitative
measurements of this information and infer from it the
source process and the medium property. The easiest and
most common seismological measurements are the high-
frequency (onset) arrival times of body waves and waveform
amplitudes. These direct measurements, however, are not
efficient in extracting source and structural information from
the seismograms. High frequency or ray-theoretical approx-
imation to body-wave arrival times requires smooth struc-
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tural variations and is difficult to apply to 3D structures. On
the other hand, since the seismic records originate from the
complex interference among waves of different frequencies
and from different paths, and phase and amplitude effects
are entangled on the seismograms, instantaneous waveform
amplitudes vary in a nonlinear fashion with model varia-
tions.

Gee and Jordan (1992) introduced the approach of gen-
eralized seismological data functional (GSDF) to making in-
direct waveform measurements. It involves a process in
which the phase and amplitude variations in the waveforms
are disentangled. The frequency-dependent phase and am-
plitude anomalies with respect to the reference source and
structural models are then measured over a set of narrow-
band filters. This approach also provides a mechanism to
account for the effects on the measurements due to the win-
dowing and filtering operations in the measurement process
and the interference effects from neighboring seismic
phases. Measurements obtained through the GSDF approach
have been used in regional structural inversions (e.g., Gah-
erty et al., 1996; Katzman et al., 1998), global finite-moment
tensor inversions (McGuire et al., 2001), and the structural
and source investigations in the L.A. Basin (Chen et al.,
2005).

The GSDF approach is based on the cross correlation
between the observed waveform u(t) and its synthetic ũ(t)
for the initial or reference models of the source and structure.
Cross correlation is a simple and accurate way of quantifying
the phase and amplitude differences between two wave-
forms. For example, the travel-time anomaly dsp can be de-
fined as the lag time at which the cross correlagram reaches
the maximum. If the travel-time anomaly is small, it can be
expressed as (Tanimoto, 1995; Zhao and Jordan, 1998; Dah-
len et al., 2000)

t2
˙̃u(t)du(t)dt!

t1
ds ! " , (1)p t2

2˙| ũ(t) | dt!
t1

where du(t) is the waveform perturbation, namely, du(t) !
u(t) " ũ(t), a dot represents the time derivative, and the
integrals are over the time window [t1,t2] enclosing the entire
waveform of the arrival of interest. In this article, a wiggle
always indicates a quantity in the reference model. The
cross-correlation measurement dsp reflects the integrated or
averaged travel-time or phase shifts between the synthetic
and recorded waveforms over the finite time window [t1,t2].
It is a generalization of the high-frequency (onset) arrival-
time anomaly in the sense that the latter is merely a special
case of the cross-correlation result in (1) at the limit of in-
finite frequency.

With the travel-time anomaly defined in equation (1),
the amplitude anomaly can be measured by a parameter dsq

defined as

˜exp("x ds ) ! A/A , (2)a q

where xa is the dominant angular frequency of the wave-
form, A is the amplitude of the cross correlagram at the lag
time dsp, and Ã is the maximum amplitude of the autocor-
relagram of the synthetic seismogram. The amplitude anom-
aly has an expression similar to equation (1) for the travel-
time anomaly:

t2

ũ(t)du(t)dt!
t1 1

ds ! " , (3)q t2xa 2| ũ(t) | dt!
t1

Although the cross-correlation approach provides ac-
curate phase and amplitude anomaly measurements dsp and
dsq, it does not fully explore the frequency-dependent nature
of the seismic-wave propagation in the earth, for example,
the well-known dispersion of surface waves. As demon-
strated by Katzman et al. (1998), dispersion also widely oc-
curs in body waves simply because a given body wave in-
teracts with different parts of the earth model at different
frequencies. Therefore, a given waveform has frequency-
dependent phase and amplitude anomalies dsp(x) and
dsq(x), and they also have frequency-dependent structural
sensitivities (see plate 2 in Katzman et al., 1998). We also
note here that the quantities defined in equations (1) and (3)
are delay-time and amplitude-reduction measurements: posi-
tive values for dsp and dsq represent delays in arrival time
and decreases in amplitudes, respectively, of the records
relative to the synthetics. Moreover, both types of measure-
ments have the unit of time.

The GSDF approach is exactly designed to explore the
frequency-dependent structural effects on seismic waves in
order to extract more independent information from the
waveforms to enhance the resolving power in the inversions.
In this approach, phase and amplitude anomalies, denoted
by dsp(xi) and dsq(xi), are measured from the cross corre-
lagrams that have been time windowed and narrowband fil-
tered around a set of frequencies xi. More importantly, the
GSDF method provides the mathematical formula that ex-
press the waveform-derived measurements dsp(xi) or dsq(xi)
as the averages of the heterogeneity-induced dsp(x) and
dsq(x) over the corresponding time window and (narrow)
frequency band. Details on the GSDF definition, measure-
ment, and formulation can be found in Gee and Jordan
(1992).

Fréchet Kernels for Seismic Delay Times
and Amplitudes

Generally speaking, the source and structural effects are
coupled in the GSDF measurements. As a result, a unified
methodology can be designed so that both the source and
structural variations can be inverted from the same GSDF
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dataset in a mutually consistent manner. Inversion of the
GSDF data for the finite-moment tensors of earthquakes is
described in Chen et al. (2005). In this article, we discuss
the structural component of this unified approach. In addi-
tion, we will focus on the delay-time and amplitude reduc-
tion dsp(x) and dsq(x) that are caused by the structural het-
erogeneities only. We first derive the expressions of their
structural sensitivity functions or Fréchet kernels. Then we
demonstrate some of the properties of these kernels using
simple structural models. Finally, we present Fréchet kernels
in realistic 3D reference models for data obtained from sev-
eral local earthquakes.

According to the representation theorem (e.g., Aki and
Richards, 2002), the perturbation of the displacement wave-
form can be expressed exactly as an integral over the volume
of the earth model under study:

2! "˜du(r , t;r ) ! " G(r ,s;r) • dq(r)R S R! ! " 2
# "! "s$

3I " # • [dC(r) • #] • u(r, t"s;r )dt d r , (4)S#
where rS and rR are the locations of the source and receiver,
respectively. The perturbations in density and the second-
order elastic tensor are dq and dC, respectively. G̃(rR,s; r)
is the Green’s tensor from r to receiver rR in the reference
model, u(r, t"s; rS) is the displacement from earthquake
source at rS to r in the perturbed model, and I is the second-
order identity tensor. Equation (4) is an exact yet nonlinear
(implicit) equation since the displacement u(r, t"s;rS) is the
wavefield in the perturbed model. Integrating by parts and
applying the Gauss theorem, equation (4) can be rewritten
in the form

3du(r , t;r ) ! dU(r , t;r;r ) d r , (5)R S R S!
#$

with the integration kernel

2! " u˜dU(r , t;r;r ) ! " dq(r)G •R S ! $ 2
"! "s

213˜$ (#G) : dC(r) : (#u) dt , (6)%
where, for brevity, we have omitted the arguments for
G̃(rR,s; r) and u(r, t"s; rS). The symbol (•)213 represents the
transposition of the first and the second indices of a third-
order tensor. In obtaining equation (6), we consider only the
perturbations in density and elements of the elastic tensor.
Perturbation of material discontinuities including the free
surface requires perturbing the boundary conditions and is
beyond the scope of this article. Substituting equations (5)
and (6) into equations (1) and (3), we obtain the expressions

for the delay time and amplitude reduction for the displace-
ment waveform ũl (rR, t;rS) polarized in direction êl:

3ds ! dT (r ;r;r ) d r , (7)p p R S!
#$

3ds ! dT (r ;r;r ) d r , (8)q q R S!
#$

with the integration kernels:

t21
dT (r ;r;r ) ! ũ (r , t;r )p R S l R S!P t1l

2! " u˜ê • [dq(r)G • (9)l" ! 2
"! "s

˜$ (#G) : dC(r) : (#u)] ds dt ,#
t21

dT (r ;r;r ) ! ũ (r , t;r )q R S l R S!Q t1l

2! " u˜ê • [dq(r)G • (10)l" ! 2
"! "s

˜$ (#G) : dC(r) : (#u)] ds dt ,#
where the normalization factors are

t t2 22 2˙P ! | ũ (t) | dt, and Q ! x | ũ (t) | dt . (11)l l l a l! !
t t1 1

Thus the inversions of the delay times and amplitude reduc-
tions for a specific model parameter m are enabled by the
Fréchet or sensitivity kernels defined in the following way:

m 3ds ! K (r)dm(r)d r . (12)p p!
#$

m 3ds ! K (r)dm(r)d r . (13)q q!
#$

By the definitions in equations (12) and (13), the Fréchet
kernels and linearly relate the delay times andm mK (r) K (r)p q

the amplitude reductions, respectively, to the perturbations
of model parameters. Explicit expressions for the Fréchet
kernels of a specific model parameter m can be derived from
equations (7)–(10) by taking the limit

ds dsp qm mK (r) ! lim , and K (r) ! lim , (14)p q$ % $ %dm(r) dm(r)¢ ¢dmr0 dmr0

where dm¢ is a proper global measure of the perturbation of
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the model parameter m from the reference model, for ex-
ample, the maximum absolute value of dm(r). By virtue of
the fact that

lim u ! ũ , (15)
¢dmr0

we can simply replace the perturbed field u in equations (9)
and (10) by its counterpart in the reference model ũ, thus
linearizing the problem. For the perturbations in the isotropic
P- and S-wave speeds, the expressions for the delay-time
and amplitude-reduction Fréchet kernels are

t !21a ˙K (r) ! " 2q̃!̃ũ (r , t;r )p l R S! !P t "!1l
T˜ẽ • [(# • G )(# • ũ)]ds dt , (16)l

t !21aK (r) ! " 2q̃!̃ũ (r , t;r )q l R S! !Q t "!1l
T˜ẽ • [(# • G )(# • ũ)]ds dt , (17)l

t !21b ˜ ˙K (r) ! 2q̃bũ (r , t;r )p l R S! !P t "!1l

213 T˜ẽ • {(#G) : [(#ũ) $ (#ũ) ] (18)l

T˜"2(# • G )(# • ũ)}ds dt ,

t !21b ˜ ˙K (r) ! 2q̃bũ (r , t;r )q l R S! !Q t "!1l

213 T˜ẽ • {(#G) : [(#ũ) $ (#ũ) ] (19)l

T˜"2(# • G )(# • ũ)}ds dt ,

where the superscript T represents the transpose of a second-
order tensor. Note that in these expressions for the kernels
at a location r, G̃ is the Green’s tensor from r to the station
at rR and ũ is the displacement field at r due to the earth-
quake at rS, and both wavefields are evaluated in the refer-
ence model.

Equations (12), (13), and (16)–(19) provide the theo-
retical framework of the seismic structural inverse problem.
The difficulty and resolution of a specific tomography ap-
proach depend on the level of complexity of three major
elements in the inverse problem. They are the model per-
turbation dm(r), the Fréchet kernel K(r), and the reference
model m̃(r) in which the Green’s tensor G̃ and the wavefield
ũ are calculated. All three elements are intrinsically three-
dimensional functions. However, in almost all tomography
inversions conducted so far, the Fréchet kernels and/or the
reference models are assumed to be 1D or 2D based on re-
search interests and due to the computational limitations.
The choice of the reference model dictates the wave-
propagation theory needed to compute the Green’s tensor G̃
and the wavefield ũ. For instance, ray theory is appropriate
as long as the reference structure varies smoothly for the

seismic waves and therefore it is usually identified as a high-
frequency approximation, whereas normal-mode theory can
be used as an exact approach in a radially symmetric refer-
ence model. On the other hand, reducing the dimensionality
of the Fréchet kernel implies structural averaging (smooth-
ness) of the model perturbation dm(r). For example, Fermat
approximation (no ray-path change due to model perturba-
tion) produces kernels that are nonzero only on the geomet-
rical ray paths by averaging the structure in the plane per-
pendicular to the ray path, path-average assumption leads to
only depth-dependent kernels after averaging in both hori-
zontal dimensions, and cross-path stationary-phase approx-
imation reduces the kernels to 2D functions within the
source-station great-circle plane with the averaging in the
transverse direction. Numerical modeling (Baig and Dahlen,
2003) shows that the structural averaging is valid only when
the model perturbation is smooth over the first Fresnel zones
of the seismic waves.

The problem with using ray theory and Fermat kernels
in seismic tomography is obvious in imaging global shear-
wave structure where intermediate-to long-period records
(50 sec and longer) are used. Li and Tanimoto (1993) pro-
posed a remedy in which the ray theory and Fermat approx-
imations are replaced by the normal-mode theory and a
cross-path stationary-phase approximation, respectively.
The Fréchet kernels were no longer concentrated on the ray
path but were 2D functions distributed in a 2D zone around
the ray paths in the source-receiver great circle planes. This
approach has been applied to both global (Li and Romano-
wicz, 1996; Mégnin and Romanowicz, 2000) and regional
(Katzman et al., 1998) studies. More recently, algorithms
for computing 3D Fréchet kernels have been developed for
global and regional tomography inversions, including the
ray-theoretical approach for smooth 1D reference models
that enables efficient calculations for geometrical arrivals
(Dahlen et al., 2000; Hung et al., 2000) and the normal-
mode approach for arbitrary arrivals in general 1D reference
models (Zhao et al., 2000).

So far, tomography studies for crustal structure on re-
gional to local scales have primarily been the inversions of
the P-wave travel times based on the Fermat approximation
and ray theory, namely, the travel-time anomaly at a station
is regarded as accumulated along the geometrical ray path
between the earthquake and the station, and the structure
away from the ray path has no effect on travel time. As
discussed before, this approximation requires a smooth
structural variation in both the reference model and the per-
turbed model. Therefore, it not only limits the resolving
power of the tomography inversions but may also be invalid
when complex 3D models must be used as reference models.
P. Chen et al. (unpublished results, 2005) demonstrates that
for seismic records at the Southern California Seismic Net-
work stations from local earthquakes, simple 1D models are
insufficient and 3D models such as the SCEC CVM 3.0 model
must be used. Based on these considerations, we adopt the
finite-difference methods as our wave-propagation theory
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and compute the 3D Fréchet kernels for the delay times and
amplitude reductions. This approach permits us to conduct
nonlinear tomography inversions by iteratively updating the
reference models, obtaining new measurements and Fréchet
kernels, and inverting again for new models. Tromp et al.
(2005) presented a different implementation in which the
spectral-element method was used in computing the Fréchet
kernels of the GSDFs based on an adjoint formulation.

In the next section, we discuss issues related to the im-
plementation of expressions for computing the Fréchet ker-
nels. Numerical results are presented in the sections “Fréchet
Kernels in a Uniform Half-Space” and “Fréchet Kernel for
Records from Local Earthquakes.”

Implementation of the Expressions for the 3D
Fréchet Kernels

From equations (16)–(19) we can see that in order to
compute the value of a Fréchet kernel at a specific location
r, we need to have ũ(r, t;rS), the displacement field from the
earthquake source at rS to r and G̃(rR, t; r), the Green’s ten-
sor from r to the receiver at rR; the spatial derivatives of
these field variables at r; and ũ(rR, t; rS), the displacement
field from the source directly to the receiver. In computing
the displacement and the Green’s tensor, we adopt the
staggered-grid finite-difference algorithm (Olsen, 1994)
with precisions of fourth order in space and second order in
time. This finite-difference algorithm includes an accurate
treatment of the free-surface boundary condition (Gott-
schaemmer and Olsen, 2001) and adopts the method of per-
fectly matched layers (PML) formulated for fourth-order
staggered grids for the absorbing boundary condition (Mar-
cinkovich and Olsen, 2003). The kernels are evaluated at the
same grid points that are used for the finite-difference cal-
culations. Since each finite-difference simulation provides
the three-component wave fields from a given source at all
the grid points, the displacements ũ(r, t; rS) and ũ(rR, t; rS)
are obtained in the same finite-difference simulation. How-
ever, the calculation of the Green’s tensor G̃(rR, t; r) would
be prohibitively heavy if we had to run the finite-difference
simulations from each grid point r. A well-known approach
to reduce the number of numerical simulations in computing
the Green’s tensors from all the grid points to a receiver is
to apply the principle of reciprocity for the Green’s tensors
(e.g., Aki and Richards 2002) between r and receiver rR:

T˜ ˜G(r , t;r) ! G (r, t;r ) . (20)R R

As a result, the Green’s tensors from all the grid points to
the receiver at rR can be obtained by only three finite-
difference simulations, for the unit impulsive point forces in
three basis directions, using rR as the source. With the rec-
iprocity consideration, for each source-station pair, only four
finite-difference simulations are needed to compute the
Fréchet kernels for all the delay-time and amplitude-
reduction measurements that can be obtained from the three-

component seismic record. After the finite-difference cal-
culations, we obtain the divergence and gradients of the
wave fields by numerical differentiations. They are subse-
quently transformed to the frequency domain to compute the
convolutions appearing in equations (16)–(19) as the inte-
grals over s. The results are then transformed back to the
time domain to evaluate the time integrals over the window
[t1, t2]. This algorithm can be implemented on both shared-
memory and distributed-memory systems. To compute all
the kernels for a three-component record at a station with
4000 timesteps and 2.5 million spatial grid points, it takes
$10 hours on a shared-memory SUN Server with eight
750 MHz processors, and 80% of the CPU time is spent on
the four finite-difference simulations. In tomography prac-
tices, the number of finite-difference simulations can be fur-
ther reduced. Since the Green’s tensors G̃(rR, t;r) are for
specific stations and do not depend on actual earthquakes,
they can be computed for all the stations and kept in storage.
Then for each earthquake only one finite-difference simu-
lation is necessary.

Fréchet Kernels in a Uniform Half-Space

As a first numerical experiment of the algorithm, we
choose the simplest reference model: a half-space having
constant density and P- and S-wave speeds and a free sur-
face. Both the source and the receiver are buried at a depth
of 24 km to reduce the effect of the free surface on the direct
arrivals, and the source-receiver distance is 32.2 km. The
Cartesian coordinate system is chosen such that the x-axis
points from the receiver to the source and the z-axis points
upward. The model parameters are q ! 3000kg/m3 ! !
6500m/sec and b ! 3500 m/sec. The source-time function
commonly used in finite-difference modeling has a Gaussian
form

2s(t) ! exp["a(t " b/2) ] , (21)

where the parameter a controls the characteristic width of
the source-time function and ultimately the maximum fre-
quency of the synthetic seismogram, and b specifies the time
it takes for the source-time function to reach the maximum.
Here we choose a ! 60 and b ! 0.65, resulting in synthetics
with maximum frequency of about 2 Hz. We consider two
types of sources: an explosive (isotropic) source and a
double-couple one.

Explosive Source

Buried in a uniform medium under the free surface, the
explosive source emits only a P wave, and there can be only
three arrivals at the buried receiver: the direct P wave and
the free surface reflected pP and pS waves.

The Fréchet kernels for P-wave speed ! for the direct
P-wave travel-time and amplitude anomalies measured on
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Figure 2. Numerical results for the P wave from an explosive source in a uniform
half-space. Plotted are the X-component finite-difference synthetic and the Fréchet
kernels of the X-component delay time dsp and amplitude reduction dsq for the P-wave
speed !. The source and receiver, denoted by S and R, respectively, have a distance
of 32.2 km and are both at the same depth of 24 km. X is the direction from receiver
to the source, and Z is upward. The banana-doughnut phenomenon can be seen in the
two plots for the delay time kernel in the source-receiver vertical plane and the trans-
verse plane midway (dashed line) between the source and the receiver. The red and
blue circles around points A and B indicate the locations of the model perturbation
used in the numerical test discussed later. In this and subsequent waveform plots in
this section, the waveform in the time window [t1, t2] over which dsp and dsq are mea-
sured is always highlighted in red. In all the plots for the kernels, the color schemes
are such that white represents zero; warm colors (yellow to orange to red) represent
negative amplitudes indicating that a velocity increase leads to an advance in arrival
time and an increase in amplitude; and cool colors (light to dark blue) represent positive
amplitudes indicating a velocity increase leads to a delay in arrival time and a reduction
in amplitude.

the X-component seismogram are shown in Figure 2. In the
uniform half-space model, the P-wave ray path is the straight
line between the source S and the receiver R. Also plotted
is the X-component waveform computed by the finite-dif-
ference method. In this and the rest of the waveform plots
in this section, the portions of the waveform in red indicate
the time window [t1, t2] over which the delay times and am-
plitude reductions are measured and the corresponding ker-
nels are computed. From the patterns of the Fréchet kernels
in Figure 2, we can see immediately that even at the rela-
tively short period of 0.5 sec that dominate the seismic wave-
form, the sensitivities of the P-wave delay time and ampli-
tude reduction are not concentrated on the ray path, but
extend as far as about 8 km away from it. We also see the
counterintuitive phenomenon of the vanishing delay-time
sensitivity on the ray path. This so-called banana-doughnut
shape of the delay-time kernel has been observed and ex-
plained in a number of previous studies (Marquering et al.,
1999; Dahlen et al., 2000; Hung et al., 2000; Zhao et al.,
2000). It is the typical behavior of single-path, minimum-
time geometrical body waves. However, this behavior ap-
parently does not hold near the source and the receiver
because of the complex and nongeometrical near-field con-
tributions. A recent study suggests that the near-field region
in which geometrical ray theory is invalid extends to at least
twice the wavelength from the station (Favier et al., 2004).
In the first Fresnel zone roughly delineated by an ellipsoidal
surface at the first sign change in the amplitude of the ker-
nels, the delay-time sensitivity is mostly negative (warm
color), indicating a natural behavior that a P-wave speed
increase results in an advance in P-wave arrival time. On

the other hand, the amplitude sensitivity is mostly positive,
suggesting that a P-wave speed increase leads to a positive
dsq or an amplitude reduction (see equation 2). This result
can be qualitatively explained by the diffraction of the P-
wave energy away from its geometrical ray path when the
wave speed there is increased. This defocusing effect leads
to a reduction in the P-wave amplitude at the receiver.

Figures 3 and 4 show the delay-time and amplitude-
reduction Fréchet kernels for ! for the X-component pP and
pS waves, respectively. We can observe properties similar
to those seen in Figure 2 in the kernels for the direct P wave,
such as the banana-doughnut distribution in the delay-time
kernels as well as the negative and positive amplitudes in
the first Fresnel zone in the delay-time and amplitude-
reduction kernels. However, the sensitivities for these
surface-reflected waves extend to a more distant region from
the ray paths than the direct P wave due to longer ray paths,
demonstrating the effect of the propagation distance on the
width of the first Fresnel zone. Also can be seen in Figure
3 are the spatially much more rapidly oscillating oval-ring
shaped (egg shells in 3D) distributions. They result from the
scatterings of the direct P wave P wave (larger set of rings)
and to S wave (smaller set of rings). These P-to-P and P-to-
S scattered waves arrive within the time window in which
the pP measurements are made.

Even though the overall patterns in the Fréchet kernels
can be explained very well by the physics of wave propa-
gation, there are still persistent and spatially highly oscilla-
tory patterns that are the results of numerical noises, as can
be seen in the wispy tail near the source S in Figure 2. These
numerical noises can be caused by the numerical dispersion
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Figure 3. Same as Figure 2 but for the pP wave for the same synthetic as in Figure 2.
Plotted are the Fréchet kernels of the delay time dsp and amplitude reduction dsq for the
P-wave speed !. The dsp kernel is plotted in the source-receiver vertical plane and the
transverse plane midway between the source and the receiver indicated by the dashed line.
The green circle around point C indicates the location of the model perturbation used in
the numerical test discussed later.

Figure 4. Same as Figure 2 but for the pS wave for the same synthetic as in Figure 2.
Plotted are the Fréchet kernels of the delay time dsp and amplitude reduction dsq for the
P-wave speed !.

in the finite-difference method, the inaccuracies in the free
surface and absorption boundary conditions, and the forward
and inverse fast Fourier transformations in our frequency-
domain implementation of the convolutions in equations.
(16)–(19). Because of rapid spatial oscillations, the integrals
of these numerical noises are always negligible. Regardless,
care must be taken in setting up the simulation parameters
such as the dimensions of the simulation volume, the grid
spacing, timestep, and the parameters a and b in equation
(21) for the source-time functions.

In order to validate that the Fréchet kernels can correctly
predict the arrival-time and amplitude perturbations, we con-
duct a numerical experiment in which we perturb the starting
model by increasing both the P- and S-wave speeds in a
sphere centered at three different points shown by the red
and blue circles in Figure 2 and the green circle in Figures
3 and 4: point A midway on the direct-wave ray path; point
B, which is 6 km above point A; and point C located at a
depth of 10 km beneath the pP surface bounce point. Each
of the wave-speed perturbations is such that it is at a maxi-
mum of 5% (in d!/! or db/b) at the center of the sphere and
decreases with the distance from the center in a cosine square
fashion until it reaches zero at a distance of 3 km. The wave-
forms for these three perturbed models are compared with
that for the original uniform half-space in Figure 5. It can
be seen that in the synthetic seismogram for the perturbation
around point A (red line), the P-wave amplitude is reduced

due to the defocusing effect, as predicted by the dsq kernel
in Figure 2. However, the entire P waveform is widened
such that the travel time as measured by the cross correlation
of the entire P waveforms remains unchanged. On the other
hand, for a perturbation around point B, the P wave is ad-
vanced (blue line) whereas its amplitude remains the same.
This is also consistent with the predictions of the kernels in
Figure 2. For a perturbation around point C, the pP wave is
advanced (green line) and its amplitude is increased. The pS
wave is slightly advanced while its amplitude is decreased.
Therefore, all the waveform comparisons are consistent with
the Fréchet kernel predictions.

Double-Couple Source

We next consider the situation of a double-couple
source in the uniform half-space. The focal plane has a strike
in the direction of the y-axis and a dip of 45% and the rake
is also 45%. A double-couple source buried in a uniform half-
space emits both P and S waves. Thus there are six arrivals
at the receiver: the direct P and S waves and the free surface
reflected pP, pS, sP, and sS waves. For the uniform half-
space model used here and the source-receiver geometry
shown in Figure 6, these phases arrive in three time win-
dows. The first is the direct P wave at around 5 sec. Then
the direct S wave and the surface reflected pP wave arrive
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Figure 5. Comparisons of the X-component seismograms for the original uniform
half-space model and three perturbed models. The locations of the three perturbations
are shown in Figures 2, 3, and 4 by the red, blue, and green circles around points A,
B, and C, respectively. The black dashed lines are the waveform for the original model
and the perturbed waveforms are plotted by the same colors as those for the circles for
the perturbation locations. The model perturbations and the resulting waveform changes
are described in the text. The upper left plot shows the entire reference time series. The
other three plots are blow-ups around the three specific seismic phases.

Figure 6. Numerical results for the X-component of the P wave from a double-
couple source in a uniform half-space. The kernels for the P-wave speed ! are plotted.
The focal mechanism has a strike in Y direction, a dip of 45%, and a rake of 45%. The
red circle around points D indicates the location of the model perturbation used in the
numerical test discussed later.

at around 9 sec. Finally pS, sP, and sS arrive almost together
right after 12 sec.

The Fréchet kernels for the direct P wave in Figure 6
show similar patterns as those for the P wave from an ex-
plosive source. However, near the source the pattern is more
complicated. The reason for this is that for a double-couple
source, the P-wave Fréchet kernel changes sign with direc-
tion according to the P-wave radiation amplitude that varies
with takeoff angle and the azimuth. As a result, the kernels
near the source have a four-lobe pattern. This is further com-
plicated by near-field P-and-S coupling and the sign change
from one Fresnel zone to another, thus resulting in an even

more complicated pattern near the source. Farther away from
the source, the kernels have significant amplitude only in the
first Fresnel zone in which all the waves come from the
source within a rather small solid-angle range with no sign
change in the P-wave radiation amplitude. The kernels for
the direct S wave on the Y-component are shown in Figure
7. The patterns are largely the same as those for the direct
P wave, only the widths are smaller due to the smaller wave-
length of the S wave. The delay-time kernel for the third
group of arrivals pS$sP$sS is shown in Figure 8. The
pattern is more complicated than the delay-time kernel in
Figure 4 because of the competing contributions of the dif-
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Figure 7. Numerical results for the Y-component of the S wave from the same
double-couple source as in Figure 6 in a uniform half-space. The kernels for the S-
wave speed b are plotted. The red circle around point D indicates the location of the
model perturbation used in the numerical test discussed later.

Figure 8. Numerical results for the X-component
of the pS$sP$sS wavegroup from the same double-
couple source as in Figure 6 in a uniform half-space.
Plotted is the kernel for the P-wave speed !.

ferent Fresnel zones of the pS, sP, and sS waves. Still, the
kernel is dominated by the two P-wave legs in the pS and
sP phases.

Shown in Figure 9 is the result of an experiment for the
double-couple source in which we perturb the model in a
sphere around point D (Figs. 6, 7). The shape, amplitude,
and extent of the perturbation are the same as those in the
numerical experiments for the explosive source. The result-
ing P wave has no travel-time change (red line) but a re-
duction in amplitude, whereas the S wave is slightly ad-
vanced and its amplitude is significantly reduced. Once
again the waveform comparisons are consistent with the pre-
dictions of the kernels in Figures 6 and 7.

Fréchet Kernels for Records from Local Earthquakes

In this section we present numerical results for the
Fréchet kernels in realistic 3D reference models. We use
events and stations in and around the Los Angeles Basin.
Locations of the events and stations are indicated in Figure
1. The reference model is the SCEC CVM 3.0 model (Kohler

et al., 2003; Magistrale et al., 2000) for southern California.
This regional 3D model combines information from multiple
sources. In particular, for the L.A. Basin and a number of
other sedimentary basins in the region, the P-wave speed is
determined by empirical relationships from the sediment’s
depth and age, and the S-wave speed is obtained by scaling
the P-wave speed with a constant Poission’s ratio. Further-
more, in the top 300 m, the P- and S-wave speeds are con-
strained independently by borehole data. The densities in the
basin models are also derived from the P-wave model. Out-
side the basins, a tomography model (Hauksson et al., 2000)
for the 3D wave-speed structure and a Moho depth model
obtained from receiver function analysis (Zhu and Kana-
mori, 2000) are adopted. The 3D basin model presents quite
a challenge to numerical simulations because the S-wave
speed near the surface drops to as low as $100 m/sec. In
order for the numerical computations to be manageable, we
slightly modify the SCEC CVM 3.0 model by clamping the
density and P- and S-wave speeds at 2 g/cm3, 2.5 km/sec,
and 1.5 km/sec, respectively. In all the numerical examples
discussed in this section, the dominant period in the calcu-
lations is about 1.5 sec.

The Fréchet kernels in Figure 10 are for the direct P
waves along four paths (solid lines in Fig. 1). They reflect
the sensitivities of the direct P waves to the P-wave speed
!. Also plotted are the recorded seismograms and the cor-
responding synthetics in the SCEC CVM 3.0 model. The first
observation from these images of the kernels is that at such
a short period, the sensitivities of these body waves are not
concentrated on the geometrical ray paths but spread around
the ray paths over a wide area. The longer the ray paths are,
the wider the sensitivities spread. The phase-delay kernels
also exhibit typical banana-doughnut shape (Dahlen et al.,
2000; Hung et al., 2000; Zhao et al., 2000) with diminishing
amplitude along the ray paths. However, in each of the
phase-delay kernels, the doughnut behavior does not extend
all the way to either end of the ray path because of the ex-
ceptionally large near-field amplitudes in the vicinity of both
the source and the receiver. In fact, these phase-delay kernels
show that the near-fields have a disproportionally large con-
tribution to the observed travel-time anomalies. The Fréchet
kernels for the amplitude reductions are as expected. They
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Figure 9. Comparisons of the X- and Y-component seismograms for a double-
couple source in the original uniform half-space model and the model with an increase
in both P and S wave speeds around point D as shown in Figures 6 and 7. The black
dashed lines are the waveform for the original model and the perturbed waveforms are
in red. The model perturbations and the resulting waveform changes are described in
the text.

Figure 10. Fréchet kernels of direct P waves for P-wave speed ! along four source-
receiver paths shown by the solid lines in Figure 1. Also shown are the recorded (black)
and synthetics (red) seismograms. The time windows in which the kernels are computed
are also indicated (in sec). All the kernel plots are made in the source-receiver vertical
plane. In each box, the two side boundaries are the intersections of the source-receiver
vertical plane with the modeling boundary (box in Fig. 1). The crosses indicate the
locations of the stations (surface) and the sources (at depth).
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Figure 11. Fréchet kernels of direct S waves for S-wave speed b along three source-
receiver paths shown by the dashed lines in Fig. 1. Also shown are the recorded (black)
and synthetics (red) seismograms. The time windows in which the kernels are computed
are also indicated (in sec).

are maximum along the ray paths and also have much larger
amplitude near the sources and receivers.

In the images of the Fréchet kernels in Figure 10, there
are also some regions with highly oscillatory amplitudes.
These are possibly the product of three factors. Firstly, the
oscillatory patterns near the surface in the kernels for stations
RPV and PLS are perhaps caused by the scatterings at the
surface or by strong lateral gradients in and around the basin.
Secondly, in the kernels for DLA, the oscillatory amplitudes
near the surface are physically unexplainable and are prob-
ably due to the numerical inaccuracy in the surface and ab-
sorbing boundary conditions in the finite-difference simu-
lations. Finally, the spatial Gibbs phenomenon because of
the limited bandwidth can also enhance the effects by the
previous two factors. In any case, these numerical noises are
highly spatially oscillatory and with proper choice of the
model cell sizes they are unlikely to have significant effect
in tomography inversions.

Figure 11 shows the Fréchet kernels of the direct S
waves for the S-wave speed b on the transverse and radial
components along three paths (dashed lines in Figure 1).
These kernels are clearly leaner than the P-wave ones in
Figure 10 because of lower S-wave speed hence shorter
wavelengths and smaller Fresnel zone widths. These are sig-
nals arriving later in the seismograms, and therefore they are
much more likely to be the superpositions of multiple arriv-

als than the first-arriving direct P waves. The fact that they
are not purely single shortest-path arrivals means that the
doughnut phenomenon no longer exists. We can see that the
sensitivity is not zero but positive along the ray path for
the SH wave at CHN, and at RUS the SH-wave kernel has
a very larger positive amplitude along its ray path, presum-
ably due to strong multipathing effect. This can be confirmed
by the synthetic seismogram for RUS in which the SH wave-
form has almost undergone a p/2 phase shift from the SH
wave at CHN. These sensitivity kernels for the S-wave speed
b fill a gap in the studies of local high-resolution shear-wave
structures. In the current Harvard and SCEC high-resolution
3D models for Southern California, only the P-wave speed
is directly obtained from seismic or other observations
whereas the S-wave structure is always derived from the P-
wave model using scaling relations. However, the Fréchet
kernels for b that we compute here provide a reliable tool to
invert for the S-wave structure directly from seismic obser-
vations and independently from the P-wave inversions.

In Figure 12 we display the Fréchet kernels for more
complicated phases along four paths (dotted lines in Fig. 1).
Because of much more complicated effects such as multi-
pathing and nongeometrical reflections/refractions, the sen-
sitivity patterns no longer suggest coherent ray paths. These
arrivals and their Fréchet kernels provide additional sensi-
tivities to the P- and S- wave speeds, and they are very im-
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Figure 12. Fréchet kernels of nondirect arrivals for P- and S-wave speeds along
four sourcereceiver paths shown by the dotted lines in Figure 1. Also shown are the
recorded (black) and synthetics (red) seismograms. The time windows in which the
kernels are computed are also indicated (in sec).

portant in improving the resolution in tomography inver-
sions.

Discussion

We have developed an algorithm to compute accurate
3D Fréchet kernels for delay-time and amplitude anomalies
based on complex 3D reference models. The algorithm uses
the finite-difference method for the forward wave-propagation
modeling. By applying the reciprocity property, the number
of finite-difference simulations required can be limited to
merely NE $ 3NS, where NE and NS are the numbers of
events and stations, respectively. Green’s tensors for seismic
stations from the 3NS simulations can also be used to invert
for the centroid-moment tensors and finite-moment tensors
of the earthquakes (Chen et al., 2005). This ensures that the
NE simulations for the earthquake-generated wavefields are
based on good approximations of the sources. The algorithm
can be readily parallelized and is efficient enough for prac-
tical tomography studies for the L.A. Basin based on the
current regional 3D model.

Numerical results for the travel-time and amplitude ker-
nels demonstrate that for a 3D reference model, the seismic
waves interact with the structure in very complicated ways.
Even at periods as short as 1.5 sec, the sensitivity kernels
display properties much more complex than those expected

by ray theory or the strict doughnut phenomenon except in
the far fields of the first-arriving P wave. The signals on a
seismogram after the first arrival are usually difficult to iden-
tify and analyze, and the 3D kernels are very useful in vi-
sualizing the sources of energy that contribute to the signals
and in locating potential problems in the reference model.

The algorithm developed here provides a general and
automatic process in establishing the linear relation between
the model perturbation and the delay-time and amplitude
anomalies measured over any given time windows. The sen-
sitivities of the measurements to any model parameter are
obtained without the need to associate the signals to any
particular ray paths. For the signals that arrive late in the
seismograms and are impossible to model by ray theory or
simple layered models, this algorithm is extremely valuable
to imaging the subsurface S-wave structure because these
signals interact much more heavily with the shear-wave
structure.
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