0–5 Hz deterministic 3-D ground motion simulations for the 2014 La Habra, California, Earthquake

Zhifeng Hu, Kim B. Olsen and Steven M. Day

Department of Geological Sciences, San Diego State University, San Diego, CA 92093, USA. E-mail: zhh076@ucsd.edu

Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA 92182, USA

Accepted 2022 April 29. Received 2022 April 8; in original form 2021 October 6

SUMMARY

We have simulated 0–5 Hz deterministic wave propagation for a suite of 17 models of the 2014 M_w 5.1 La Habra, CA, earthquake with the Southern California Earthquake Center Community Velocity Model Version S4.26-M01 using a finite-fault source. Strong motion data at 259 sites within a 148 km \times 140 km area are used to validate our simulations. Our simulations quantify the effects of statistical distributions of small-scale crustal heterogeneities (SSHs), frequency-dependent attenuation $Q(f)$, surface topography and near-surface low-velocity material (via a 1-D approximation) on the resulting ground motion synthetics. The shear wave quality factor $Q_S(f)$ is parametrized as $Q_{S,0}$ and $Q_{S,0}f^\gamma$ for frequencies less than and higher than 1 Hz, respectively. We find the most favourable fit to data for models using ratios of $Q_{S,0}$ to shear wave velocity V_S of 0.075–1.0 and γ values less than 0.6, with the best-fitting amplitude drop-off for the higher frequencies obtained for γ values of 0.2–0.4. Models including topography and a realistic near-surface weathering layer tend to increase peak velocities at mountain peaks and ridges, with a corresponding decrease behind the peaks and ridges in the direction of wave propagation. We find a clear negative correlation between the effects on peak ground velocity amplification and duration lengthening, suggesting that topography redistributes seismic energy from the large-amplitude first arrivals to the adjacent coda waves. A weathering layer with realistic near-surface low velocities is found to enhance the amplification at mountain peaks and ridges, and may partly explain the underprediction of the effects of topography on ground motions found in models. Our models including topography tend to improve the fit to data, as compared to models with a flat free surface, while our distributions of SSHs with constraints from borehole data fail to significantly improve the fit. Accuracy of the velocity model, particularly the near-surface low velocities, as well as the source description, controls the resolution with which the anelastic attenuation can be determined. Our results demonstrate that it is feasible to use fully deterministic physics-based simulations to estimate ground motions for seismic hazard analysis up to 5 Hz. Here, the effects of, and trade-offs with, near-surface low-velocity material, topography, SSHs and $Q(f)$ become increasingly important as frequencies increase towards 5 Hz, and should be included in the calculations. Future improvement in community velocity models, wider access to computational resources, more efficient numerical codes and guidance from this study are bound to further constrain the ground motion models, leading to more accurate seismic hazard analysis.

Key words: Structure of the Earth; Numerical Modelling; Computational seismology; Earthquake ground motions; Seismic attenuation; Wave propagation.

1 INTRODUCTION

It is the ultimate goal for ground motion modellers to deliver their results to engineers and see their work used in applications beneficial for society, such as structural design. This is particularly useful in cases of infrequent observations, such as for large-magnitude events at short distances from the fault, where simulations may provide a viable alternative to data. Deterministic ground motion predictions, including features such as 3-D velocity structure and frequency-independent anelastic attenuation are now routinely produced for frequencies up to about 1 Hz with generally satisfactory fit to recorded data (e.g. Graves 1996; Olsen et al. 2009; Roten et al. 2012). These simulations have
proved to be useful in public earthquake emergency response and seismic hazard management (e.g. the ShakeOut scenario; Jones et al. 2008), and in complementing empirical ground motion prediction models in regions with sparse station coverage (e.g. Day et al. 2008).

While the results of these low-frequency simulations are promising, structural engineers frequently need ground motions with signal content up to 5 Hz and higher for design purposes. Hybrid techniques, combining deterministic low-frequency and stochastic high-frequency signals (e.g. Olsen & Takedatsu 2015; Graves & Pitarka 2016) can be used to generate synthetic seismograms with frequency content up to at least 10 Hz. However, simulating both the lower and higher frequency content using a deterministic approach (in the sense outlined in Section 2) has the potential to lower part of the epistemic uncertainty in the resulting ground motion estimates. In this study we investigate the feasibility of increasing the highest frequency for accurate deterministic ground motion predictions to 5 Hz, using simulations and data for the 2014 M_w 5.1 La Habra, CA, earthquake. The La Habra event was chosen due to an abundance of records available in the greater Los Angeles area, while ground motions can be considered linear due to its relatively small magnitude.

As frequencies increase above about 1 Hz, features with increasingly small length scales become important to realistically predict deterministic ground motions. For example, small-scale heterogeneities of both the source and surrounding medium (SSHs), on the order of tens to hundreds of metres, are expected to increasingly affect ground motion predictions at higher frequencies. Frequency-independent anelastic attenuation ($Q(f)$), often chosen as proportional to the local velocity structure (e.g. Graves & Pitarka 2010) is usually a good approximation for lower frequencies (up to \sim1 Hz; e.g. Liu et al. 1976; Fehler et al. 1992). However, models of frequency-independent anelastic attenuation appear to be inconsistent with seismic records at higher frequencies where regional studies indicate that larger Q values may be more appropriate in some regions (e.g. Withers et al. 2015). Finally, ground motion simulations often artificially truncate the lowest near-surface velocities due to computational limitations, which may be a reasonable approximation for lower frequencies (e.g. Olsen et al. 2003). However, stronger effects from the near-surface material emerge as frequencies increase and wavelengths decrease (e.g. Pitarka & Ichinose 2009; Imperatori & Mai 2013). Here, we quantify the effects of all of these features in our 3-D simulations of the La Habra event.

In southern California, two state-of-the-art 3-D velocity models, namely the Community Velocity Models (CVM) versions S and H, have been developed through the Southern California Earthquake Center (SCEC). These CVMs have been validated against ground motion data in a series of studies (e.g. Taborda et al. 2016; Savran & Olsen 2019; Lai et al. 2020). Ely et al. (2010) proposed a method to calibrate the near-surface material based on estimates of the time-averaged velocity in the upper 30 m (V_{30}), and later improved by Hu et al. (2022) (this issue, companion paper), specifically for sites with poor constraints for shallow rock site velocities (see Section 2.6). Here, we use the SCEC CVM-S with the update by Hu et al. (2022).

The effects of irregular surface topography on ground motions play an increasingly large role as frequencies increase (e.g. Liu et al. 2020). In recent studies, theoretical and numerical methods have helped clarify the interaction between seismic waves and topography (mainly scattering and trapping of waves, e.g., Imperatori & Mai 2015; Takemura et al., 2020, as well as describing the characteristic effects on ground motions. Some of the most notable effects of topography found by these studies are listed in the following.

1. Amplification tends to occur at the top of relatively steep slopes for waves with comparable wavelength to the size of the topographic features; on the other hand, deamplification tends to occur at low-elevation areas (Trifunac & Hudson 1971; Boore 1972; Bouchon & Barker 1996; Spudich et al. 1996; Assimaki et al. 2005). Amplification can range up to a factor of 10 or more between the crest and base of a topographic feature (Davis & West 1973; Umeda et al. 1987; Geli et al. 1988; Gaffet et al. 2000).
2. The amplification at mountain tops is systematically larger for incident S compared with P waves, with diminishing effect as the slope decreases or the incidence angle increases (Bard 1982).
3. Body and surface waves are strongly scattered by irregular topography, thus reducing ground motion amplitudes while prolonging the shaking duration (Sánchez-Sesma & Campillo 1991; Lee et al. 2009).
4. Topography tends to disrupt the coherency of high-frequency ground motion and thereby distort the S-wave radiation pattern (Imperatori & Mai 2015). Notably, 3-D models of the topography are necessary to capture the amplification effects, as noted in two-dimensional simulation studies (Geli et al. 1988; Bouchon & Barker 1996). While geometrical proxies, such as smoothed curvature and relative elevation, have been explored to represent topographic effects (e.g. Maufroy et al. 2015; Rai et al. 2017), they require critical parameter constraints based on local velocity and target frequency, and are thus difficult to generalize for broad-band studies.

It should be noted that previous studies discussed above include only a subset of the model features deemed to be affecting high-frequency ground motions, or omitted validation of the results. In this study, we present the results of a suite of ground motion simulations for frequencies up to 5 Hz in the widely tested SCEC CVM-S4.26M01 including high-resolution topography, and compare to strong-motion data for the 2014 M_w 5.1 La Habra, CA, earthquake, in order to constrain the relative contributions from topography, near-surface velocities, SSHs, and $Q(f)$ on the ground motions.

The paper is organized as follows. We first describe the velocity model, simulation parameters, processing of the synthetic and recorded ground motions, and the source description. Then the relative effects of model features mentioned above are quantified through goodness-of-fit (GOF) measures between synthetics and data. Finally, we discuss future research directions based on our results.

2 MODEL FEATURES AND COMPUTATIONAL ASPECTS

In this section we describe the simulation method and model set-up, and summarize the features included in our model. In addition, we outline the processing parameters for simulations and data, and introduce our GOF measures to validate our simulations.
2.1 Numerical method for simulating ground motions

We use the staggered-grid finite-difference (FD) code AWP-ODC (Anelastic Wave Propagation, Olsen-Day-Cui, from the authors of the code, hereafter denoted by AWP; Cui et al. 2010), which is fourth-order accurate in space and second-order accurate in time, to generate ground motion predictions for the La Habra event. AWP has been adapted to GPU accelerators for kinematic sources (Cui et al. 2013) and provides support for frequency-dependent viscoelastic attenuation (Withers et al. 2015) and topography using a curvilinear grid (O’Reilly et al. 2022). Sponge layers following Cerjan et al. (1985) are implemented along the sides and bottom of the model to mitigate spurious energy reflected back to our computational domain.

The accuracy of AWP has been thoroughly verified. For example, large-scale earthquake simulations in realistic 3-D earth models with strong heterogeneities and complex finite-fault source descriptions (Bielak et al. 2010, 2016) revealed good agreement between AWP, another staggered-grid FD code and a finite-element code. The implementation of frequency-dependent anelastic attenuation was tested by Withers et al. (2015) against a frequency–wavenumber solution, and the accuracy of the curvilinear topography implementation (O’Reilly et al. 2022) was verified against SPECFEM3D (Komatitsch & Tromp 2002).

2.2 CVM

We used a model domain of lateral dimensions 148 km × 140 km, rotated 39.9° clockwise with a depth extent of 60 km (see Fig. 1). The mesh was extracted from the SCEC CVM-S4.26-M01, a version of the original CVM-S4 model (Magistrale et al. 2000; Kohler 2003) with iterative 3-D tomography updated inversions in Southern California (Lee et al. 2011). The SCEC Uniform Community Velocity Model software framework (V19.4; Small et al. 2017) was used for the extraction of seismic P-wave velocity (V_P), V_S and the material density. The choice of CVM-S4.26-M01 (hereafter abbreviated with CVM-S) for this study was based on the results by Taborda et al. (2016) who concluded from a comprehensive validation of four velocity models with 30 earthquakes in the greater Los Angeles region that this model consistently yielded the best fit to ground motion data using a variety of metrics. The model includes the near-surface V_S tapering method proposed by Hu et al. (2022), which improved the fit between 0 and 1 Hz synthetic and recorded ground motions for the La Habra event.

2.3 Small-scale heterogeneities

Small-scale crustal heterogeneities (SSHs, on the order of tens to hundreds of metres) are known to exist in nature (e.g. Savran & Olsen 2016) but are insufficiently resolved in state-of-the-art velocity models. Instead, SSHs are commonly included in numerical simulations via statistical models of property fluctuations (e.g. Imperatori & Mai 2013; Savran & Olsen 2019). Here, we superimpose a statistical model of
0–5 Hz deterministic 3-D simulations

2.4 Topography

While the greater Los Angeles region, including the epicentral area of the La Habra event, is characterized by relatively flat topographic relief, the San Gabriel and Santa Ana Mountains bound the area to the north and east, respectively (see Fig. 1). To quantify the effects of topography on ground motions from the La Habra event, we use the curvilinear grid approach by O’Reilly et al. (2022). In this version of
Table 1. Simulation parameters used for the deterministic ground motion simulations of the 2014 La Habra earthquake.

<table>
<thead>
<tr>
<th>Model</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topography</td>
<td>Yes</td>
</tr>
<tr>
<td>Length</td>
<td>147.840 km</td>
</tr>
<tr>
<td>Width</td>
<td>140.400 km</td>
</tr>
<tr>
<td>Depth</td>
<td>58.000 km</td>
</tr>
<tr>
<td>Northwest corner</td>
<td>−118.0154409, 34.8921683</td>
</tr>
<tr>
<td>South west corner</td>
<td>−118.9774168, 33.9093124</td>
</tr>
<tr>
<td>Southeast corner</td>
<td>−117.7401908, 33.0695780</td>
</tr>
<tr>
<td>Northeast corner</td>
<td>−116.7729754, 34.0429241</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td></td>
</tr>
<tr>
<td>Maximum frequency</td>
<td>5 Hz</td>
</tr>
<tr>
<td>Minimum V_S</td>
<td>500 m s$^{-1}$</td>
</tr>
<tr>
<td>Points per minimum S-wavelength</td>
<td>5</td>
</tr>
<tr>
<td>Grid discretization</td>
<td>20 m</td>
</tr>
<tr>
<td>Number of cells</td>
<td>150,486 336 000</td>
</tr>
<tr>
<td>Number of CPU processors</td>
<td>756</td>
</tr>
<tr>
<td>Number of GPU processors</td>
<td>1512</td>
</tr>
<tr>
<td>Wall-clock time</td>
<td>5 hr</td>
</tr>
<tr>
<td>Temporal resolution</td>
<td></td>
</tr>
<tr>
<td>Time discretization</td>
<td>0.0006 s</td>
</tr>
<tr>
<td>Simulation time</td>
<td>120 s</td>
</tr>
<tr>
<td>Number of time steps</td>
<td>200 000</td>
</tr>
</tbody>
</table>

AWP, surface topography is incorporated by stretching the computational grid in the vertical direction, while keeping the horizontal grid spacing unchanged, so that the surface grid locations conform to the shape of the topography. We include surface topography into our model domain via the 1/3 arc-second resolution Digital Elevation Model in southern California from the U.S. Geological Survey (USGS 2020).

2.5 Anelastic attenuation

Anelastic attenuation is needed for accurate simulation of seismic wave propagation through earth models at distances further than the dominant wavelength to account for dissipation of the mechanical energy. Frequency-independent attenuation (constant Q), resulting in identical seismic energy loss per cycle across a frequency bandwidth, has successfully been used to validate ground motion recordings for frequencies up to about 1 Hz (e.g. Olsen et al. 2003; Graves & Wald 2004). However, as frequencies increase above about 1 Hz, data often support frequency-dependent Q (e.g. Raoof et al. 1999; Eberhart-Phillips et al. 2014; Wang & Shearer 2017). To address these findings, Withers et al. (2015) developed an efficient coarse-grained memory variable approach to model frequency-dependent attenuation using a power-law formulation

$$Q(f) = Q_0 \left(\frac{f}{f_0} \right)^\gamma, \quad f \geq f_0, \quad (3)$$

where Q_0 is a frequency-independent Q value applied for $f < f_0$, which is used in our simulations.

A widely used parametrization of Q_0 is proportional to the local seismic velocity, with separate values $Q_{P,0}$ and $Q_{S,0}$ for V_P and V_S quality factors, respectively, producing expected stronger attenuation for lower velocity material, as pointed out by Hauksson & Shearer (2006). Taborda & Bielak (2014) revised the formula expressed by Brocher (2008) and applied a sixth-order polynomial function for $Q_{S,0}$ from V_S, and $Q_{P,0} = \frac{3}{4} \left(\frac{V_P}{V_S} \right)^2 Q_{S,0}$. Here, we test a variety of these parametrizations of Q_0 for the La Habra event. See also Table 2 for a list of the Q models tested, and the comparison of proposed Q_0–V_S relations in Supporting Information Fig. S1.

2.6 Near-surface geotechnical layer

CVM-S includes geotechnical data which integrates geology and geophysics data from surficial and deep boreholes, oil wells, gravity observations, seismic refraction surveys and empirical rules calibrated based on ages and depth estimates for geological horizons in southern California (Magistrale et al. 1996, 2000). While recent validation studies, such as Taborda et al. (2016), have shown that the basin structure included in CVM-S is reasonably accurate, unrealistically large surface rock site velocities (see Fig. 2) motivated the method by Ely et al. (2010) to reduce the V_S in the top 350 m based on available V_{S30} values. Hu et al. (2022) proposed a method to optimally taper Vs30 information to the velocities constrained by tomography in the top \sim1 km where lithological information is often poorly characterized. At this depth range, CVM-S delivers unrealistically high shallow Vs estimates for many sites outside the sedimentary basins. Here, Hu et al. (2022) tested different tapering depths (z_T) and showed that z_T of about 1000 meters generates the best fit between synthetics and seismic data for the 2014 La Habra earthquake, without compromising the fit at well-constrained sites. In contrast, they found that the widely used method...
by Ely et al. (2010) using a 350 m significantly underpredicts low-frequency (<1 Hz) ground motions at sites subject to the generic overlay. Finally, while a uniform tapering depth was tested in the models, the authors suggested that some spatial variability in taper depth (m) GOF (0.15–2.5 Hz) GOF (2.5–5 Hz) Figures where shown

<table>
<thead>
<tr>
<th>Model ID</th>
<th>Topography</th>
<th>Q(f) (^*)</th>
<th>SSH(^*)</th>
<th>(V_S) taper depth (m)</th>
<th>GOF (0.15–2.5 Hz)</th>
<th>GOF (2.5–5 Hz)</th>
<th>Figures where shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>(Q_S = 0.1V_S f^{0.6})</td>
<td>No</td>
<td>1000</td>
<td>5.24</td>
<td>4.01</td>
<td>6–9, 15, S5</td>
</tr>
<tr>
<td>2</td>
<td>Yes</td>
<td>(Q_S = 0.1V_S f^{0.3})</td>
<td>No</td>
<td>1000</td>
<td>5.36</td>
<td>4.64</td>
<td>10, 11, S6</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>(Q_S = 0.1V_S)</td>
<td>No</td>
<td>1000</td>
<td>FFCC675.43</td>
<td>4.71</td>
<td>7–9, 14, S7</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>(Q_S = 0.075V_S f^{0.4})</td>
<td>No</td>
<td>1000</td>
<td>FFCC675.43</td>
<td>68CBD04.75</td>
<td>7, 8, 13</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>(Q_S = 0.05V_S f^{0.6})</td>
<td>No</td>
<td>1000</td>
<td>5.26</td>
<td>68CBD04.75</td>
<td>7, S8</td>
</tr>
<tr>
<td>6</td>
<td>Yes</td>
<td>(Q_S = Q_{seg}(V_S) f^{0.4 +#})</td>
<td>No</td>
<td>1000</td>
<td>FFCC675.42</td>
<td>4.70</td>
<td>S9</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>(Q_S = Q_{poly}(V_S) f^{0.4 +#})</td>
<td>No</td>
<td>1000</td>
<td>5.31</td>
<td>68CBD04.79</td>
<td>S10</td>
</tr>
<tr>
<td>8</td>
<td>Yes</td>
<td>(Q_S = 0.1V_S f^{0.6})</td>
<td>No</td>
<td>0</td>
<td>5.22</td>
<td>4.04</td>
<td>9, 15, S11</td>
</tr>
<tr>
<td>9</td>
<td>Yes</td>
<td>(Q_S = 0.1V_S)</td>
<td>No</td>
<td>0</td>
<td>5.37</td>
<td>4.45</td>
<td>9, 14, S12</td>
</tr>
<tr>
<td>10</td>
<td>Yes</td>
<td>(Q_S = Q_{seg}(V_S) f^{0.4 +#}) (\sigma = 5%, \ a = 100m)</td>
<td>1000</td>
<td>FFCC675.42</td>
<td>68CBD04.79</td>
<td>S4, S13</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Yes</td>
<td>(Q_S = Q_{seg}(V_S) f^{0.4 +#}) (\sigma = 5%, \ a = 500m)</td>
<td>1000</td>
<td>5.34</td>
<td>4.62</td>
<td>S4, S14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Yes</td>
<td>(Q_S = Q_{seg}(V_S) f^{0.4 +#}) (\sigma = 10%, \ a = 100m)</td>
<td>1000</td>
<td>5.24</td>
<td>4.32</td>
<td>S4, S15</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Yes</td>
<td>(Q_S = 0.1V_S f^{0.3}) (\sigma = 5%, \ a = 5000m)</td>
<td>1000</td>
<td>5.20</td>
<td>4.38</td>
<td>10, 11, S4, S16</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>No</td>
<td>(Q_S = 0.1V_S f^{0.6})</td>
<td>No</td>
<td>1000</td>
<td>5.08</td>
<td>4.00</td>
<td>15, S17</td>
</tr>
<tr>
<td>15</td>
<td>No</td>
<td>(Q_S = 0.1V_S f^{0.6})</td>
<td>No</td>
<td>0</td>
<td>5.06</td>
<td>3.99</td>
<td>15, S15</td>
</tr>
<tr>
<td>16</td>
<td>No</td>
<td>(Q_S = 0.1V_S)</td>
<td>No</td>
<td>1000</td>
<td>5.34</td>
<td>68CBD04.78</td>
<td>14, S19</td>
</tr>
<tr>
<td>17</td>
<td>No</td>
<td>(Q_S = 0.1V_S)</td>
<td>No</td>
<td>0</td>
<td>5.16</td>
<td>4.52</td>
<td>A1, S20</td>
</tr>
</tbody>
</table>

The largest GOFs are marked by tan (0.15–2.5 Hz) and turquoise (2.5–5 Hz) background colours.

* \(Q_P = 2Q_S\)

** \(Q_{seg}(V_S) = 0.075V_S\), for \(V_S \leq 1500\) m s\(^{-1}\); \(Q_S = 0.2V_S = 187.5\), for \(V_S > 1500\) m s\(^{-1}\).

*** \(Q_{poly}(V_S) = 10.5 – 16V_S + 153V_S^2 – 103V_S^3 + 34.7V_S^4 – 5.29V_S^5 + 0.31V_S^6\), for \(V_S\) in km s\(^{-1}\), see Taborda & Bielak (2014).

\(^1\)When included, hurst number = 0.05 and horizontal to vertical correlation length ratio = 5; \(a\) represents the vertical correlation length.

2.7 Ground motion simulations

Table 1 lists the parameters used in our simulations. All simulations have the same duration of 120 s and resolve wave propagation up to \(f_{\text{max}} = 5\) Hz by at least 5 points per minimum S-wavelength. We use AWP-topo that supports a uniform regular, curvilinear mesh to model wave propagation in composite models with support for topography, with \(V_S\) less than 500 m s\(^{-1}\) set to (hereafter referred to as clamped at) 500 m s\(^{-1}\) to reduce computational cost (additional approximations to account for the effects of material with \(V_S\) lower than 500 m s\(^{-1}\) are described in Section 3.1). \(V_P\) in the low-velocity material is determined by the \(V_P/V_S\) ratio from the (un-clamped) CVM-S, and the density is unchanged. We use a kinematic source generated following Graves & Pitarka (2016), which creates finite-fault rupture scenarios with stochastic characteristics optimized for California events. The focal mechanism was taken from the U.S. Geological Survey (strike = 233°, dip = 77°, rake = 49°; USGS 2014) with a moment magnitude 5.1.

2.8 Data processing

259 strong-motion seismic stations were used to validate the simulations. The strong motion recordings (velocity time-series) are obtained from SCEC (F. Silva, personal communication, 2020), with hypocentral distances up to 90 km and signal-to-noise ratios above 3 dB. The processing procedure include the following steps: (1) low-pass filtering of the time-series below 10 Hz using a zero-phase filter; (2) interpolating the time-series linearly to a uniform time step; (3) tapering off at the last 2 s using the positive half of a Hanning window; (4) zero padding the last 5 s; (5) filtering the seismograms to the desired frequencies, for bandwidths 0.15–1, 0.15–2.5, 1–2.5 and 2.5–5 Hz and (6) converting velocities to accelerations by a time derivative. Except for the initial 10 Hz low-pass filter, all filters used a low-cut frequency of 0.15 Hz to avoid noise interference (in the data). Fourth-order Butterworth filters were used in all cases. Finally, our horizontal synthetic seismograms were rotated 39.9° counter-clockwise to provide east-west and north-south polarizations consistent with the recorded seismograms. The same filters were applied to records and synthetics for proper comparison.

2.9 Intensity measures

We use seven different intensity measures to characterize the performance of our ground motion models for the La Habra earthquake, namely peak ground velocity (PGV), peak ground acceleration (PGA), energy duration (DUR), cumulative energy (ENER), response spectral acceleration (RS), smoothed Fourier amplitude spectrum (FAS), as well as Arias intensity (AI). We computed the RS at frequencies linearly spaced from 0.2 to 5 Hz. Cumulative energy is calculated as \(\text{ENER} = \int V(t)^2 dt\), where \(V(t)\) is the particle velocity and \(t\) is time. Both \(\text{ENER}\)
2.10 Source models

Due to the stochastic characteristics of the kinematic source generator by Graves & Pitarka (2016), a series of 40 source realizations following the focal mechanism discussed in Section 2.7 with different random seeds were evaluated based on comparisons between spectral accelerations from records at stations with epicentral distance of 31 km or less (R. Graves, personal communication, 2020). The 40 source models, using a fault area of 2.5 km × 2.5 km, were simulated using CVM-S and evaluated based on the average absolute bias between synthetics and data up to 5 Hz using a weighted average of two metrics: (1) the median pseudospectral acceleration (PSA) rotated over all azimuths (RotD50) at stations within 31 km and (2) the PSA for the north–south and east–west components separately within 13 km of the source, from which we selected the three best performing source descriptions with hypocentral depths at 5, 5.5 and 6 km (see Supporting Information Fig. S2). The rupture duration of the source descriptions is less than 2 s, and they were sampled at an interval of 0.0006 s, identical to the time step used in our simulations. The three sources tend to generate overall similar patterns of PGV within a given bandwidth, such as low (<2.5 Hz) or high (>2.5 Hz) frequencies (see Supporting Information Fig. S3). Based on this result, we carry out our ground motion simulations with the source model with the best fit to the data (Source 1; see Fig. 3) only in order to limit the computational expense. We note that this source displays a Brune-type high-frequency omega-squared fall-off, with realistic values of corner frequency (0.68 Hz) and stress drop (about 10 MPa).

3 RESULTS

Using the source model described in Section 2.10, we carried out 17 simulations in an attempt to determine the model parameters that generate the best fit to the strong motion data for the La Habra earthquake. An overview of the 17 models used in our study, as well as the figures showing the corresponding results, can be found in Table 2. In this section, we discuss the relative effects of the model parameters as obtained from our simulations.
3.1 Low-velocity near-surface material

Southern California features several low-velocity basins where the lowest V_S in CVM-S can be much lower than the minimum value of 500 m s$^{-1}$ that we imposed in our models (see Fig. 2). As previous studies have pointed out, soft soils, characterized by lower V_S, can generate significant amplification of ground motions (e.g. Anderson & Hough 1984). Reducing the minimum V_S will, however, increase the computational cost for the series of 3-D numerical simulations needed in our analysis beyond the available resources. For example, simulations in models with minimum V_S at 200 m s$^{-1}$ instead of 500 m s$^{-1}$ requires about 40 times more node hours for a single simulation with constant grid spacing.

For this reason, we use a computationally much less expensive 1-D method, which models vertically incident SH waves in a horizontally layered half-space (e.g. Day 1996; Thompson et al. 2012), to account for effects of the material with V_S less than 500 m s$^{-1}$. In this way, the FAS ratio of the two 1-D results characterizes the effects of the material with V_S less than 500 m s$^{-1}$, and is then superimposed upon our 3-D simulations (with minimum V_S clamped at 500 m s$^{-1}$) by multiplication in the frequency domain. Because the SH1D method considers SH waves only, we will apply this calibration to horizontal components only.

Fig. 4 illustrates the results of applying the SH1D method low-velocity correction for an example site (CE13884, $V_{S, min}=154$ m s$^{-1}$). The two profiles show similar SH1D responses below about 0.3 Hz, above which the SH1D response ratio slowly trends upward with frequency, depicting the amplification from the material with V_S less than 500 m s$^{-1}$. The PGV of the horizontal synthetic with the correction is increased by up to 32 per cent (largest near 5 Hz) relative to that with V_S clamped at 500 m s$^{-1}$ (Fig. 4c). However, the correction leaves the shape of the waveform almost unchanged. The smoothed Fourier spectra (Fig. 4d) further suggests that such clamping of V_S may be reasonable for frequencies up to 0.8–1 Hz.

We have verified that the 1-D correction is reasonably accurate using a 3-D simulation with minimum V_S of 200 m s$^{-1}$, see Appendix A. For example, the approximate solution is within about 10 per cent and 25 per cent of the 3-D response on the horizontal components at frequencies less than 2.5 Hz and for 2.5–5 Hz, respectively, while the vertical component is largely unaffected. We do not expect a significant bias of the resulting optimal $Q(f)$ models from the 1-D approximation, which is applied to all of our 3-D simulations.
Figure 5. Per cent difference of PGV (top row), DUR (second row), and AI (bottom row) at the surface determined by the model with topography (Model 1) and the model without topography (Model 14) for (left-hand column) 0.15–1 Hz, (centre column) 1–2.5 Hz and (right-hand column) 2.5–5 Hz. Positive (negative) values coloured in red (blue) indicate amplification (deamplification). The star denotes the epicentre of the La Habra event.

3.2 Topography

In this section we investigate the effects of topography, which are often ignored in numerical simulations of wave propagation (e.g. Graves & Wald 2004; Olsen et al. 2006; Savran & Olsen 2019). We note that the curvilinear grid in the topography model distorts the Cartesian grid in the vertical direction to be identical to the non-topography model at any given depth below sea level. Fig. 5 shows the per cent difference between models with and without topography for PGV, DUR and AI for bandwidths of 0.15–1, 1–2.5 and 2.5–5 Hz. It is clear that topography complicates the wavefield pattern significantly, even at frequencies below 1 Hz, in terms of DUR and thus AI. Consistent with previous studies (e.g. Hartzell et al. 1994; Lee et al. 2009), we observe weak deamplification of PGV below 1 Hz in basin areas, while mountain peaks and ridges may amplify PGV by up to 50 per cent. In addition, we find that PGV is reduced by about 30 per cent in the Chino Basin and northwest of San Gabriel Mountains. These results are in agreement with Ma et al. (2007) who found that the San Gabriel Mountains scatter surface waves from a northern rupture on the San Andreas Fault and reduce the PGVs in the LAB by up to 50 per cent. We interpret these results as shielding and focusing effects on the front (e.g. the south slope of the San Gabriel Mountains) and back (e.g. the north slope of the San Gabriel Mountains) sides of the mountains, respectively, which become more significant at higher frequencies, in agreement with Liu et al. (2020). In addition, as frequencies increase above 2.5 Hz, we observe a clear pattern of ‘amplification–deamplification–amplification’ along the N–S (short) axis of the San Gabriel Mountains, which is predicted in the numerical experiments by Liu et al. (2020).

It is particularly notable that DUR within 10 km of the source is strongly increased for both low and high frequencies, mostly to the north (northwest end of the Santa Ana Mountains). Here, topography seems to act as a significant source of scattering that increases the wave duration on the sides of the mountain facing the incoming wavefields, while DUR is reduced on the ‘back’ sides of the mountain as seen from the source location. At further distance from the source, our results show a clear negative correlation between the effects on PGV amplification and DUR lengthening, suggesting that topography redistributes seismic energy from the large-amplitude first arrivals to the adjacent coda waves. These results are in agreement with Lee et al. (2009) who noted that the effects from topography can interfere with those from path and directivity.
3.3 Anelastic attenuation

We tested a range of different parameter settings for the frequency-dependent anelastic attenuation implementation in AWP (see Table 2), with their efficacy reported in conjunction with other features in this study. Note that all of our models use $Q_p/Q_S = 2$, an assumption often used in southern California (e.g. Withers et al. 2019). Fig. 6 illustrates the areal pattern and distance dependence of PGVs with Model 1 using $Q_S = 0.1V_S f^{0.6}$, one of the models providing favourable fit to data for simulations of the 2008 Chino Hills earthquake by Savran & Olsen (2019). While the simulated PGVs provide an overall good fit to data for 0-2.5 Hz as reported by Savran & Olsen (2019), the PGVs for distances less than about 40 km significantly overpredict the data for 2.5–5 Hz.

Fig. 7 summarizes some of the effects of our tests by a comparison between the FAS and corresponding bias from Models 1, 3, 4 and 5 (see Table 2). Among the four attenuation models in Fig. 7, $Q_S = 0.075V_S f^{0.4}$ (Model 4) fits the vertical component of the data the best, and $Q_S = 0.1V_S$ (Model 3) provides the best fit to the FAS of the data for the horizontal components. $Q_S = 0.05V_S f^{0.6}$ (Model 5) underpredicts the FAS of the data between about 0.7 and 2 Hz on both horizontal and vertical components. A power-law exponent of 0.6 overpredicts the high-frequency FAS on the horizontal components, particularly for Model 1, while the exponent of 0.4 used for Model 4 provides a much improved fit to data. Thus, a scaling of Q_S with V_S by factors of 0.05 and lower as well as higher than 0.1, and using γ larger than 0.6 appear to worsen the fit to data. Two additional models with sharper increase in Q_S for higher V_S as compared to lower V_S (segmented, Model 6, and polynomial, Model 7; Supporting Information Fig. S1) do not significantly improve the fit to data (see Supporting Information Figs S9 and S10).

The differences in the fit for horizontal and vertical components mentioned above (Fig. 7) may indicate a different (and possibly depth-dependent) Q_p/Q_S relationship, as the vertical component is generally dominated by P waves. However, another reason for the discrepancy

Figure 6. Comparison of interpolated PGVs measured at 259 stations, depicted by triangles, for (a) data, (b) synthetics using Model 1 (including topography, 1000 m shallow velocity taper and frequency-dependent attenuation, see Table 2). The star denotes the epicentre of the La Habra earthquake. (c) PGV as a function of R_{hypo} for data and synthetics. The left- and right-hand columns show band-limited results for 0.15–2.5 and 2.5–5 Hz, respectively.
3.4 SSHs

Fig. 10 shows the effects on PGV and DUR from adding a von Kármán distribution of SSHs with $\sigma = 5$ per cent and horizontal correlation length of 5000 m compared to a reference model without SSHs. Our results indicate that realistic distributions of SSHs generate more strongly scattered ground motions as compared to those by topography with stronger effects at farther distance and at higher frequencies. These findings are in general agreement with Savran & Olsen (2019), who studied a smaller region up to 2.5 Hz, roughly in the centre of our simulated domain.

Przybilla et al. (2009) used elastic radiative transfer theory to show that the directional dependence of scattering can be identified by ak, where a is the correlation length and k is the wave number. For $ak \approx 1$, waves interact with a heterogeneous medium most intensively because the wavelength and correlation length are on the same order. When $ak \gg 1$, waves are predominantly scattered in the forward direction, which generates focusing in the early arrivals and leads to larger peak amplitudes, and vice versa for $ak \ll 1$. Fig. 11, showing the case with $a = 5000$ m and $\sigma = 5$ per cent, indicates a regime in between forward and backward scattering, with an increase of PGVs and lengthening of durations averaged across the region of less than 10 per cent. The variability of the ground motions introduced by the SSHs range from 20 per cent to 41 per cent for PGVs and durations respectively, at one standard deviation, increasing with frequency. The results for additional realizations with various standard deviations and correlation lengths of the random field show that larger standard deviations and correlation lengths tend to yield stronger SSH effects (see Supporting Information Fig. S4).

4 DISCUSSION AND CONCLUSIONS

In this study, we have explored the effects of a series of different model features on the resulting ground motions for the 2014 M5.1 La Habra, CA, earthquake. However, trade-offs among the parameters complicate determining a unique set of model parameters creating a best fit to the
Figure 8. (a–c) Spatial distribution of the three-component bias for PGV, band-pass filtered between 2.5 and 5 Hz. The bias values are computed as the base 10 logarithm of the ratio between simulations and records at each strong motion site. Positive (negative) values represent overprediction (underprediction). (d) Moving average of the bias of PGV using a 20-point window from the three Q models (see Table 2) shown in (a)–(c) versus hypocentral distance.

In order to quantitatively rate the performance of the different model features, we used a modified subset of the GOF metrics proposed by Anderson (2004) and Olsen & Mayhew (2010) for the comparison of broad-band seismic traces (0 to 10 Hz). We define the GOF score for each metric as

$$G_{\text{metric}} = 10 \text{erfc} \left(\frac{2|x-y|}{x+y} \right),$$

where x and y are two positive scalars from the selected metrics, and erfc is the Error function. G_{metric} is computed for each metric and combined into a weighted average using all three components. We used weights of 0.5, 0.5, 1, 0.5, 0.5, 1 and 1 for PGV, PGA, DUR, AI, ENER, RS and FAS, respectively, where the reduced weights are chosen due to correlation between metrics (Olsen & Mayhew 2010). The GOF score for the entire simulation is calculated as the average across all 259 stations (G_{station}). GOF values between two signals above 4.5 and 6.5 are considered fair and very good fits, respectively.

The GOF scores for the models (see Table 2) explored in this study are shown in Fig. 12 (see also Fig. 13 and Supporting Information Figs S5–S20 for results for individual models). Note that the model ID does not represent any ranking of their GOF against seismic records. The models generally achieve GOF in the range of 5.1–5.4 for the low frequencies (<2.5 Hz), and about an increment lower for the high frequencies (>2.5 Hz), due to increased uncertainty in the source description and model parameters of the former.
Figure 9. Bias of (a and b) PGV and (c and d) DUR for passbands (left) 0.15–2.5 Hz and (right) 2.5–5 Hz at all 259 stations. The bias is calculated in the same way as for Fig. 7. The solid lines depict the moving average of the bias using a 20-point window for each of the Q models (model IDs enclosed in parentheses in the legend; see Table 2) versus hypocentral distance. ‘Taper’ refers to the maximum V_S modification depth described by Hu et al. (2022).

Figure 10. Difference in (top row) PGV and (bottom row) DUR from Model 13, including SSH with $\sigma = 5$ per cent and $d = 5000$ m, versus Model 2 (no SSHs). Left-hand (right-hand) columns show results for bandwidths 0.15–2.5 Hz (2.5–5 Hz). The star depicts the epicentre.

The highest GOF value for models including for 0–5 Hz include Models 2–4, 6–7, 10 and 16, favouring Q_{S0}/V_S values of 0.075–0.1 and γ values of 0–0.6. However, the models with frequency-independent Q (see Fig. 9, Models 3 and 9) tend to generate too large attenuation for the higher frequencies at distances larger than 40 km, and we recommend using $\gamma > 0$ for future simulations in the Los Angeles area, which is in agreement with the inverted value of 0.4 from the study by Lin & Jordan (2018) using P and S waves in Southern California. The presence of topography generally produces higher GOF values than models without topography (except Model 16) for 2.5–5 Hz. In general,
the models with taper depth of 1000 m yield better GOF, as compared to the models with shallower taper depth or no velocity taper. The simulations with SSHs constrained by borehole data (Models 10–13) fail to significantly improve the GOF.
Hu et al. (2022; this issue, companion paper) showed that reducing shallow velocities in CVM-S at poorly constrained sites in the greater Los Angeles area by a generic taper function based on V_{30} was able to improve the fit of ground motion synthetics to data for the La Habra earthquake, particularly in regions constrained by limited geological information. However, their tests were restricted to frequencies below 1 Hz and models with a flat free surface. Here, we examine the efficacy of the method for frequencies up to 5 Hz, while adding topography to the models from Hu et al. (2022). As in their study we divided the 259 strong motion recording sites into two groups: type A sites representing sites with good geological constraints, and type B sites with poor geological constraints, characterized by unrealistically large surface V_{S} (>1000 m s$^{-1}$) and nearly constant V_{S} in the top 500–1000 m in CVM-S. Fig. 14 shows the median FAS for both types of sites from various models (see Table 2). As observed by Hu et al. (2022), type A sites are largely unaltered by the shallow velocity tapering methodology (Model 3 versus Model 9), while the original CVM-S (Model 9) significantly underpredicts the FAS at type B sites up to 5 Hz. On the other hand, including the 1000 m V_{S} taper results in a much improved fit to data for type B sites, with the 1-D correction included, for the entire bandwidth up to 5 Hz.
Topography appears to cause negligible effects in terms of FAS (see Fig. 14). Previous studies attempting to capture the effects of topography on ground motions and establish proxies to characterize such effects typically have used simple homogeneous models of earth material, for example Maufroy et al. (2015) and Rai et al. (2017). These studies found that topographic curvature is a good proxy characterizing irregular surfaces for evaluating topographic effects. However, assessment of topographic effects on ground motions is complicated by amplification due to the presence of a shallow weathering layer of low velocities, typically present in mountain regions, but omitted in these earlier studies. We re-assess these findings including the amplification effects from the modification of near-surface material at type B sites proposed by Hu et al. (2022). We calculated the smoothed curvature of topography with a smoothing window of 640 m. Here, steeper relief is characterized by larger curvature values, while flatter regions are of curvature close to zero. Fig. 15 shows the per cent difference in PGV caused by including topography for varying curvature in the simulated region. We show the response of two models, one with 1000 m V_S taper (Hu et al. 2022) and one without (original CVM-S). The model without the near-surface low velocities introduced by the V_S taper method tends to reduce the PGVs by about up to 40 per cent for most curvatures below 2.5 Hz, with a broader spectrum of de-amplification (up to 75 per cent) and amplification (up to 40-100 per cent, most pronounced for the largest curvatures) at frequencies between 2.5 and 5 Hz. These trends, however, become much more notable when the shallow low velocities are present, where steep topography (e.g. mountain summits and local steep hills) increases PGVs. This result may partly explain why in previous studies, omitting the near-surface model complexity, topographic effects on ground motions tend to underestimate the amplification at mountain tops compared to observations (e.g. Pischiutta et al. 2010; Lovati et al. 2011).

The accuracy of the source description is critical for obtaining reliable estimates of the parameters controlling model features such as $Q(f)$. The overprediction of the PGVs for near-source epicentral distances and distance decay faster than that for data at further distances (see Figs 8, 9 and 13) may at least partly be explained by uncertainty in the source moment and/or fault area. For example, the most commonly used empirical magnitude-area scaling relations suggest a source area about 60 per cent larger than that used in our study (Leonard 2010). While the moment is likely relatively well constrained, a somewhat larger fault area may decrease near-source PGVs and modify the pattern of near- and intermediate-field ground motions, e.g., due to directivity effects. While exploration of source variability in this study was limited by computational resources, we recommend using ensembles of sources to further examine the model features in future work, including some generated by different approaches (e.g. Savran & Olsen 2020).
Figure 14. Bias of FAS on the (a) east–west, (b) north–south and (c) vertical components, calculated from models with and without topography and 1000 m velocity taper. The models have the same attenuation rule of $Q_S = 0.1V_S$, and their model IDs are enclosed in the parentheses in the legend. A positive (negative) value depicts overprediction (underprediction). The left- and right-hand columns show type A (low near-surface V_S) and B (high near-surface V_S) sites, respectively. The solid lines depict the median of FAS, where the narrow band is the 95 per cent confidence interval of the median, and the dashed lines depict the standard deviation centred at the median.

The consistent overprediction of the PGVs within 40 km for all Q models (see e.g. Fig. 9) may be caused by the omission of the near-surface low-velocity material ($<500 \text{ m s}^{-1}$) during the inversion for the optimal source description, used in this study. Another potential cause of the near-source overprediction could be a very low Q in the shallow sediments (more abundant in the near-source area as compared to larger epicentral distances), as proposed by Hough et al. (1988) and examined in the numerical simulations by Withers et al. (2019). The presence of such thin, near-surface layer with very low Q would also alleviate at least part of the overprediction of the duration (DUR), as obtained for most models. On the other hand, it is intriguing that the PGVs predicted by all tested Q models appear to decay faster than data beyond 40 km, roughly at the boundaries of the LAB. This observation may suggest unrealistically large contrasts in the shear impedance near the basin boundaries in the CVM, causing excessive entrainment of waves (see Fig. 2). Imperatori & Gallovič (2017) came to a similar conclusion and was able to alleviate the trend by smoothing the velocity model. Another explanation for the underprediction of ground motions beyond epicentral distances of 40 km could be a different Q_S-V_S relation in the surrounding mountain areas compared to that in the sedimentary basins. We recommend further research into these discrepancies.

In addition to the source description, inaccuracies in the velocity structure further complicates estimation of the optimal model parameters, in particular for the Q model, as pointed out by Savran & Olsen (2019) and Lai et al. (2020). As a result, findings from previous studies may have produced biased values of γ. For example, Withers et al. (2015) estimated higher γ values (near 0.8) from their modelling of the Chino Hill earthquake. However, this estimate was obtained with a CVM-S with near-surface rock velocities biased high, as well as smaller source–station distances and lower maximum frequency. Savran & Olsen (2019) used γ equal to 0.6, but with limited high-frequency resolution up to 2.5 Hz. Nevertheless, future improvement in community velocity models, wider access to computational resources, more efficient numerical codes and guidance from this study are bound to further constrain the ground motion models, leading to more accurate seismic hazard analysis.
Figure 15. Density of PGV change for models with topography (Model 1 and Model 8) relative to models without topography (Model 14 and Model 15) for bandwidths of (left-hand column) 0.15–2.5 Hz and (right-hand column) 2.5–5 Hz, and models with (top row) and without (bottom row) modified shallow velocities (Hu et al. 2022). The y-axis depicts topographic curvature smoothed using a 2-D window of dimensions 640 m × 640 m. Values towards the top right (bottom left) denote strong amplification at steep topography (deamplification at flat topography). Note that density intervals do not correspond to constant bin sizes.

ACKNOWLEDGMENTS

This research was supported through the U.S. Geological Survey Earthquake Hazards Program (award #G19AS00021), as well as the Southern California Earthquake Center (SCEC; Contribution Number 11781). SCEC is funded by the National Science Foundation (NSF) Cooperative Agreement EAR-1600087 and the U.S. Geological Survey (USGS) Cooperative Agreement G17AC00047. We thank Robert W. Graves for providing the source models, Fabio Silva for providing the station records of the 2014 La Habra earthquake and the ‘High-F’ collaboration in SCEC, from which this work was initiated. Thorough reviews by Frantisek Gallovic, Alice-Agnes Gabriel and Duncan Agnew greatly improved our paper.

DATA AVAILABILITY

The digital elevation model is downloaded from the national map maintained by USGS at https://apps.nationalmap.gov/downloader/ (last accessed October 2020). The UCVM program used to extract velocity meshes can be obtained from SCEC at https://github.com/SCECcode/UCVMC (last accessed December 2020). The simulations were performed on Summit at the Oak Ridge Leadership Computing Facility in Tennessee. Most of the data-processing work was done using Python and the Generic Mapping Tools package (https://www.generic-mapping-tools.org, last accessed April 2021). Configuration parameters, input files and synthetic IMs for this work are available at https://doi.org/10.5281/zenodo.6403870. AWP-ODC is open source and freely available at https://github.com/HPGeoC/awp-odc-os.

REFERENCES

Supporting Information
Supplementary data are available at GJI online.

Figure S1. Shear wave quality factor (Q_S) plotted against V_S (m s$^{-1}$) for several attenuation models widely used in the literature (e.g. Olsen et al. 2003; Taborda & Bielak 2014; Savran & Olsen 2019; Withers et al. 2019) and investigated here. The inset figure in the upper left corner zooms into $V_S ≤ 1600$ m s$^{-1}$, denoted by the dashed black box. Note that these Q_S relations are valid for constant Q models, or frequency-dependent Q models for frequencies below 1 Hz.

Figure S2. Description of three candidate source models used in this study. Top: slip distribution (shading) for sources 1, 2 and 3 (a–c), characterized by their hypocentral depths of 5, 5.5 and 6 km, respectively. Contours depict rupture times at 0.4 s interval starting from 0. (d) Sum of the moment rates for all subfaults and (e) Fourier amplitude spectra. Source 1 is the default source model used elsewhere in this paper.

Figure S3. PGVs for sources 1, 2 and 3 (from left to right; see Supporting Information Fig. S2). The top and bottom rows represent the bandpass filtered results for 0.15–2.5 and 2.5–5 Hz, respectively. The star denotes the epicentre of the La Habra event.
Figure S4. Effect of SSHs on PGVs illustrated by probability density histograms of the PGV difference between models with (Models 10–13) and without (Models 2 and 6) SSHs. The definition of per cent difference (x-axis) is the same as in Fig. 11.

Figure S5. Bias of (top row) PGV and (middle row) DUR and (bottom row) GOF for bandwidths of (left-hand column) 0.15–2.5 Hz and (right-hand column) 2.5–5 Hz at all 259 stations for Model 1 (see Table 2 for model features). The bias is calculated in the same way as in Fig. 9. The solid line depicts the moving average of the bias of PGV using a 20-point window versus hypocentral distance. The shading denotes the standard deviation centred at the mean.

Figure S6. Same as Fig. S5, but for Model 2.
Figure S7. Same as Fig. S5, but for Model 3.
Figure S8. Same as Fig. S5, but for Model 5.
Figure S9. Same as Fig. S5, but for Model 6.
Figure S10. Same as Fig. S5, but for Model 7.
Figure S11. Same as Fig. S5, but for Model 8.
Figure S12. Same as Fig. S5, but for Model 9.
Figure S13. Same as Fig. S5, but for Model 10.
Figure S14. Same as Fig. S5, but for Model 11.
Figure S15. Same as Fig. S5, but for Model 12.
Figure S16. Same as Fig. S5, but for Model 13.
Figure S17. Same as Fig. S5, but for Model 14.
Figure S18. Same as Fig. S5, but for Model 15.
Figure S19. Same as Fig. S5, but for Model 16.
Figure S20. Same as Fig. S5, but for Model 17.

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the paper.

APPENDIX A: 3-D SIMULATION WITH MINIMUM V_S OF 200 m s$^{-1}$

In this study, we constrained our 3-D simulations to using $V_S > 500$ m s$^{-1}$ due to limitations in computational resources and added 1-D corrections for the effects of the material with $V_S \leq 500$ m s$^{-1}$. In order to assess the effect of these 1-D corrections, we used a 3-D simulation of the La Habra earthquake with CVM-S and a minimum V_S of 200 m s$^{-1}$ obtained from a discontinuous mesh (DM) version of AWP (Nie et al. 2017). The simulated domain (Table 1) is discretized into three partitions: (1) $dx = 8$ m from the surface to 1472 m, (2) $dx = 24$ m between 1472 m and 10336 m and (3) $dx = 72$ m at deeper levels. The improved efficiency of the DM approach allows us to lower the minimum V_S to 200 m s$^{-1}$ and retain 5 points per minimum S-wavelength. The reason for not using the more efficient DM code for other simulations in this study is that the code is currently limited to a flat free surface condition.

Fig. A1 shows the FAS bias of two 3-D simulations for Model 17 (see Table 2) with minimum V_S of 200 and 500 m s$^{-1}$, both using a flat free surface boundary condition. Since the lower velocity material has very little effect on the vertical component, we apply the correction to the horizontal components only. The SH1D correction (with the minimum V_S clamped at 200 m s$^{-1}$) is applied to the horizontal components of the 3-D simulation with minimum V_S of 500 m s$^{-1}$. For the horizontal components, the corrected simulation matches the minimum V_S of 200 m s$^{-1}$ simulation fairly well, with less than 10 per cent difference in terms of the median bias below about 2.5 Hz. The moderate overprediction for higher frequencies up to 5 Hz (about 25 per cent) is likely caused by vertical resonance effects primarily in the 1-D model.
Figure A1. FAS bias between data and synthetics with minimum V_S clamped at 200 m s$^{-1}$ (blue), 500 m s$^{-1}$ (green) and 500 m s$^{-1}$ with 1-D correction (red) for (a) E–W, (b) N–S and (c) vertical component (the 1-D correction is only applied to the horizontal components, and thus the red and green curves coincide in the vertical component). A positive (negative) bias depicts overprediction (underprediction). The solid lines show the median FAS bias over all 259 stations, shading depicts the 95 per cent confidence interval (CI) and the dashed lines denote one standard deviation centred at the median.