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ABSTRACT
We use deep learning to predict surface-to-borehole Fourier amplification functions (AFs)
from discretized shear-wave velocity profiles. Specifically, we train a fully connected
neural network and a convolutional neural network using mean AFs observed at ∼600
KiK-net vertical array sites. Compared with predictions based on theoretical SH 1D ampli-
fications, the neural network (NN) results in up to 50% reduction of the mean squared log
error between predictions and observations at sites not used for training. In the future,
NNs may lead to a purely data-driven prediction of site response that is independent of
proxies or simplifying assumptions.

KEY POINTS
• We train deep neural networks to predict observed sur-

face-to-borehole amplification functions.
• We achieve a 50% reduction in prediction error with

respect to theoretical 1D SH amplifications.

• Deep learning may lead to empirical predictions of site
responses without relying on proxies or assumptions.

INTRODUCTION
The densification of seismic networks, such as the California
Strong Motion Instrument Program strong-motion network
in California and the KiK-net observatory in Japan, have vastly
increased the number of earthquake records available for strong
motion research. In addition, the deployment of borehole accel-
erometers at many locations has resulted in a large volume of
vertical array data, which has contributed to a better understand-
ing of linear and nonlinear site response during strong shaking
(e.g., Thompson et al., 2010; Bonilla et al., 2011; Roten et al.,
2013, 2014). However, despite the increased amount of data,
the standard deviations of intensity measures in ground motion
prediction equations (GMPEs) have barely decreased over the
past four decades (Douglas, 2003; Strasser et al., 2009). Standard
deviations in GMPEs remain high because empirical methods
use very simple models to approximate highly complex wave
propagation phenomena (Bommer and Abrahamson, 2006).
Site conditions in most GMPEs are typically reduced to the aver-
age velocity in the top 30 m, VS30 and in some cases basement
depth (e.g., the depth to a constant shear-wave velocity of
1 km=s, Z1) (Abrahamson et al., 2014). Similarly, ground
motions recorded on vertical arrays have demonstrated the
shortcomings of current site response prediction techniques,
in particular, the assumption of a laterally constant medium

(Thompson et al., 2009, 2010, 2012). Three-dimensional simu-
lations with sophisticated structural models and nonlinear wave
propagation codes are needed to study the response of such sites
(e.g., Gatti et al., 2018; Hu et al., 2020). Although such case stud-
ies may shed light on the wave propagation effects behind the site
response observed at a particular location, it is not clear how this
approach can be generalized to sites for which no sophisticated
3D velocity models are available. Clearly, new methods that har-
ness the sheer volume of strong-motion data (including data
acquired on vertical arrays) are needed to reduce standard devi-
ations of intensity measure predictions.

Although seismology has always been a data intensive field,
enormous amounts of data are currently being collected in a
broad spectrum of fields ranging from technology to finance to
healthcare. Combined with increasingly powerful computers, the
availability of these very large datasets has been driving progress
in machine learning (ML) techniques, in particular, deep learn-
ing applications, which thrive under large amounts of data.

An exciting aspect of deep neural networks (NNs) is their
ability to detect patterns in the input data that allows them to
make sense of labeled output data. In contrast to shallow learning
algorithms, deep NNs are less dependent on feature engineering,
that is, the process of transforming input data into features from
which the output can be derived using a simple mathematical
expression. In site response prediction, one could think of prox-
ies such as VS30 or Z1 as engineered features needed to carry out
regression analysis for calibration of traditional GMPEs (i.e., a
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shallow learning method). A deep learning algorithm would not
depend on such engineered features and could process the entire
velocity information available for a site without resorting to sim-
plifications that discard valuable data. The idea is that the net-
work will identify new features from the provided velocity profile
that will guide a more accurate site response prediction com-
pared with proxies such as VS30 or Z1.

NNs have been proposed for prediction of site response in
previous studies (e.g., Derras et al., 2012, 2014; Withers et al.,
2020). However, to our knowledge, all previous ML models for
site response rely on the same proxies typically used in classical
empirical models. For example, the NN trained by Derras et al.
(2014) and Withers et al. (2020) used the VS30 to characterize
site conditions, while Derras et al. (2012) used the VS30 along
with the fundamental resonance frequency f 0.

In this study, we propose training a deep NN to learn the
observed mean site response at KiK-net sites based on the
entire soil stratigraphy. The goal is to develop a method that
predicts site response based entirely on observed vertical array
data, without relying on proxies (such as VS30) or simplifying
assumptions (such as 1D or a vertically incident wave field)
made in traditional site response assessment.

We have arranged the content of our article as follows. In
the Deep Learning and Design of NNs section, we provide a
quick overview of deep learning and elaborate on the design of
the NNs. In the Data Preparation section, we describe the data
preparation methods used in the calculation of transfer func-
tions from KiK-net strong-motion sites. Results of site
response prediction using the deep learning are presented in
the NN Training and Prediction Results section.

DEEP LEARNING AND DESIGN OF NNS
Artificial neural networks (ANNs) are modeled after biological
NNs found in animal brains and consist of a collection of arti-
ficial neurons interacting with each other. ANNs are typically
organized in layers, and every ANN consists of an input layer
accepting the input parameters and an output layer that pro-
duces the desired prediction.

Overview of NNs
Deep NNs feature at least one but typically several hidden
layers located between the input and output layers. In a fully
connected ANN, also called multilayer perceptron (MLP), each
artificial neuron in each layer is connected to every other neu-
ron of the previous and next layers (Fig. 1). Therefore, each
neuron receives an input signal from every neuron in the pre-
vious layer and redirects a modified signal to every neuron in
the next layer. The input function z�x� into a neuron consists
of a weighted sum of the inputs x � �x1; x2; x3;…; xm� from
the m individual neurons of the previous layer:

EQ-TARGET;temp:intralink-;;53;94 z�x� � wx� b;

in which w is a vector describing the weights of each neural
connection. The offset b is also called bias. If the current layer
has n nodes and the previous layer has m nodes, there are n ×
m connections from the current to the previous layer, and the
weight matrix connecting the two nodes has shape n ×m. In
addition, there are n offsets that must be trained. The weights
w and offset b are trainable parameters.

Activation functions allow the ANN to learn nonlinear
functions. Without activation functions, the total output of
the ANN would represent a linear function regardless of the
depth of the networks (i.e., regardless of the number of hidden
layers). Typical choices of activation functions include sig-
moids, rectified linear units (ReLUs), or hyperbolic tangent
functions (tanh) (Goodfellow et al., 2016). If the ANN is used
for regression, the output node uses a linear activation,
allowing the ANN to output any real number.

The weights and biases are optimized by training the ANN.
The goal of training is to minimize the loss function, which
quantifies the difference between the desired output provided
in the training data and the network’s actual output. Forward
propagation in a feedforward ANN refers to the computation
of the network’s output value based on the chosen input and
the ANN’s current weights and biases, with information flow-
ing from the input to the output layer. This order is reversed
during backpropagation, for which the gradient of the loss
function with respect to the ANN’s weight is computed based
on the input and desired output of one or several training
examples. Training consists of minimizing the loss by perform-
ing gradient descent on the loss function.

Because there are many trainable parameters in an ANN
and the number of training examples is often limited, deep
NNs are prone to overfitting (e.g., Goodfellow et al., 2016).
An overfitted model will perform very well on the input set
but will generalize poorly to the test set, with low misfit error
on the training set but high error on the test set (i.e., the model
exhibits high variance). Overfitting also affects inversion prob-
lems encountered within different domains of seismology, such
as seismic tomography (e.g., Nolet, 2008). A common tech-
nique to reduce variance (overfitting) in such scenarios is to
add L1 or L2 regularization (Hastie et al., 2009), which penal-
izes large weights and thereby reduces the number of free
parameters in the model. Although this type of regularization
can also be applied to deep NNs, it is more common to reduce
variance using a technique called dropout (Srivastava et al.,
2014). In dropout regularization, a predefined fraction of neu-
rons is randomly eliminated during each training iteration.
This prevents the network from relying on a single feature
and allows it to generalize better to data it has not encountered
during training.

MLP architecture
In the fully connected ANN design (also called MLP) used in
this study, the input layer expects the shear-wave velocities
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extracted at 100 predefined depths from the soil profile
(Fig. 1a,c); the sampling interval gradually increased from
1 m near the surface to 30 m at 1500 m depth. The properties
of the last layer were projected onto the remaining depth inter-
vals at shallower sites. The desired frequency of site amplifica-
tion was also provided to the ANN algorithm and represented
the last value in the input layer. The output layer consisted of a
single neuron with the site amplification value at the specified

(a)

(c)

(b)

Figure 1. Prototype of artificial neural network (ANN) for prediction of simu-
lated transfer functions. (a) Shear-wave velocities (VS, red nodes) were
discretized at n � 100 depths and (c) fed into the input layer along with the
frequency f of amplification (green node). Hidden layers in (c) are shown by
blue neurons. Where not all nodes are shown, the true number of nodes is
given at the top of the layer. (b) The output node contains the amplification
Af at the specified frequency. The color version of this figure is available only
in the electronic edition.
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frequency (Fig. 1b,c). Our design chosen for the fully con-
nected NN (MLP, Fig. 1c) used a many-to-one layout, accept-
ing many inputs but producing just a single output value. That
is, the ANN only predicted the amplification at one frequency
at a time. One could also design a similar network using a
many-to-many configuration and predict the amplification
at several frequencies at the same time. We experimented with
both many-to-one and many-to-many designs and found that
the many-to-one configuration was superior to the many-to-
many configuration for the MLP. However, a many-to-many
design was adopted for the convolutional neural network
(CNN) described subsequently.

Our MLP used seven hidden layers, and the number of neu-
rons decreased gradually from 256 nodes in the first hidden
layer toward the single-node output layer. Following DeVries
et al. (2017), the activation function assigned to the hidden
layers alternated between hyperbolic tanh and ReLUs, and a lin-
ear activation function was applied at the output layer (Fig. 1).

CNN architecture
In a convolutional layer, nodes are not directly connected to
nodes in the next layer. Instead, the data in the layer are con-
volved using a series of filters. The dimensions of the convolu-
tional layer’s output depend on the type of convolution
(overlap and stepping size) and the number of filters, with each
filter creating a new representation of the input data. However,
as most convolutional layers use many filters, the output is typ-
ically large and downsampled in a pooling layer following the

convolutional layer. A set of
convolutional and pooling
layers may be followed by
another set of convolutional
and pooling layers, or the data
are flattened and directed into
a fully connected layer.

CNNs are especially effec-
tive for image recognition or
classification problems because
they are able to extract infor-
mation from the spatial
arrangement of the pixels.
Although predefined filters
have long been used in image
processing, the effectiveness
of CNN derives from the net-
work’s ability to optimize the
filters depending on the train-
ing data. In other words, the
filter parameters are optimized
during backpropagation such
that the features extracted by
the different filters are effective
at carrying out the CNN’s task.

In our case, we applied a CNN to take advantage of the spa-
tial information in the velocity profile. We used VS and the P-
wave velocity VP as different image channels, analogous to the
red, green, and blue channels used in image recognition. In
contrast to image recognition, in which the input image is
3D (two spatial dimensions plus three channels), our input
was only 2D (VS and VP at different depths, Fig. 2). We
did not use densities because they were not provided for
KiK-net profiles.

In our CNN design, we used a single convolutional layer
with 16 filters of dimensions 5 × 2 (Fig. 2) right after the input
layer (dimension 100 × 2, with VS and VP at 100 predefined
depths). The output of the convolutional layer consisted of
100 × 16 values, which we reduced to 25 × 16 values using a
pooling layer. The output of the pooling layer was flattened
and fed into a fully connected layer of 512 nodes. Two more
hidden layers with 256 and 128 nodes followed. The output
layer contained 50 nodes, which represented the desired ampli-
fication function (AF) at 50 predefined frequencies (Fig. 2). A
ReLU function was used for activation right after the pooling
layer, and we alternated between ReLU and tanh functions in
the three fully connected layers. As in the MLP, a linear acti-
vation was used in the output layer. Dropout regularization
was applied after each layer. Batch normalization was carried
out before each activation to improve convergence (this was
also done in the MLP). Both the MLP and the CNN were
implemented with the Keras library for Python (Chollet,
2018) using the TensorFlow (Abadi et al., 2015) backend.

16 filters
of size 
(3x2)

Velocity profile 
(100x2)

v
s

v
v
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Convolution 
(100x16)

Max. pooling 
(25x16)
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Three fully connected
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(512, 256, 128 
neurons)ns)

2, 2
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Figure 2. Schematic of convolutional neural network (CNN) design for prediction of site response. For simplicity, only
one of the three fully connected layers between the flattened layer and the output layer is shown. The output layers
specifies the amplification function (AF) at 50 frequencies (many-to-many design). The color version of this figure is
available only in the electronic edition.
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DATA PREPARATION
KiK-net data
Although the KiK-net website provides the option to search for
earthquake records based on different parameters, we found
that the interface was not suitable for selecting and download-
ing the relatively large amount of records that we wanted to use
for this project. Instead, we developed a script that downloads
all of the earthquake records from the KiK-net website and
stores them locally. The acceleration time series from all earth-
quakes recorded by KiK-net stations between January 1997 and
August 2020 were downloaded from the Kyoshin website (see
Data and Resources). Five parallel download sessions were
executed to retrieve the records, which amounted to about
105 GB in total. A single event file was provided for each
recorded earthquake. Event files consist of tar archives with
acceleration time series in K-NET ASCII format for all KiK-
net sites which recorded the event. Earthquake and station
metadata were extracted from event files and stored in a local
database. Three separate tables with station information (i.e.,
station code, location, elevation, and sensor depth), event
information (event ID, date, magnitude, and hypocenter),
and record information (event ID, station code, peak ground
acceleration [PGA], and distance) were generated and stored in
Python Pandas dataframes.

In this article, we focus on predicting the mean weak-
motion amplification at a site. The prediction of event-specific
amplification, including potential nonlinear or wave propaga-
tion effects, is left for future work.

To rule out a significant impact of nonlinearity on mean
AFs, we only used records with surface PGAs below
200 cm=s2. We note that it is generally difficult to exclude non-
linearity based on a surface acceleration threshold because the
onset nonlinearity is controlled by the level of strain. We there-
fore experimented with different thresholds and found that a
value of 200 cm=s2 does not result in altered AFs compared
with threshold values of 50 and 100 cm=s2. The maximum
PGA threshold of 200 cm=s2 was selected to strike a balance
between removing unwanted nonlinear responses and keeping
large or nearby events with good signal-to-noise ratios.

Where available, we randomly picked 20 events with PGAs
within 50 to 200 cm=s2. If less than 20 events with 50 cm=s2 <
PGA < 200 cm=s2 were available, we selected the 20 events
with the highest PGA. The number of 20 events per site was
chosen because all except four sites (KNMH18, FKOH02,
SOYH3, and AICH23) recorded more than 20 events until
August 2020, and no site recorded less than 10 events.

The next step in the KiK-net data processing workflow con-
sisted of the extraction of time-series data from the selected
observations. Surface-to-borehole transfer functions were
computed for both horizontal components and smoothed
using a Konno–Ohmachi filter (bandwith w � 10), and the
geometric mean of both horizontals was computed. We then
interpolated the amplification at 50 frequencies of interest,

which are logarithmically spaced between 0.3 and 20 Hz.
This procedure was carried out for a total of 13,210 events.
Computationally, the data preparation was expensive because
two fast Fourier transforms and Konno–Ohmachi filtering
operations were executed for each record. To accelerate the
process, the web scraper and data processing workflow were
deployed on the commodity cluster Rhea at the Oak Ridge
Leadership Computation Facility (OLCF). We used the Apache
Spark Engine to distribute the data processing on up to five
nodes and 80 central processing unit cores. This approach
resulted in a wall-clock time of less than two hours for the
computation and smoothing of the AFs for all 13,210 records.

Training and test datasets were created as follows: first, we
randomly selected 90% of the sites to contribute to the training
set, and the remaining sites were assigned to the test set.
Figure 3 shows the distribution of training and test sites among
the KiK-net stations. We used the same selection of training
and test sites for all different NN layouts and hyperparameter
choices shown in this article, to allow for a one-by-one com-
parison of network performances. We created training and test
datasets by iterating over all records pertaining to each given
training and test site. In the many-to-many layout used in the
CNN for the prediction of mean AFs, the training and test sets
contained just one data point per site. In the many-to-one
design of the fully connected network, one data point for train-
ing or testing was created for each site and frequency for the
prediction of mean amplification. The number of datapoints
per site equals the number of events at the site times the num-
ber of frequencies in the prediction of event-specific amplifi-
cations using the many-to-one NN layout.

Figure 3. Locations of KiK-net sites assigned to training and test sets in this
study. The color version of this figure is available only in the electronic
edition.
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The training and test sets for the prediction of event-specific
amplifications using the many-to-one NN layout contain one
data point for each frequency and each observation per site.
The many-to-many design in the CNN requires just one data
point per observation and site in the training and test sets.

NN TRAINING AND PREDICTION RESULTS
We trained the fully connected NN and convolutional NN with
the mean AFs for 596 KiK-net sites assigned to the test set.
Mini-batch gradient descent using the Adam optimizer
(Kingma and Ba, 2014) was carried out to minimize the mean
squared logarithmic error (MSLE) between observed and pre-
dicted theoretical AFs. We chose the MSLE as our loss function
to incorporate the large range of amplifications observed
between different sites and frequencies. A low MSLE is consis-
tent with good visual agreements if AFs are plotted in logarith-
mic space as is conventionally done. We also report the mean
absolute error (MAE) between predicted and observed AFs.
The batch size was set to 2048 for the MLP and to 50 for
the CNN. We trained the ANNs for 1000 epochs using the
default learning rate of 10−3.

Prediction of mean AFs using the MLP
Figure 4 shows the learning curve obtained during training of
the fully connected neural network (MLP) with mean AFs. The
training loss (MSLE) is reduced from an initial value of 1.36 to
0.011 (Table 1). Input features (i.e., VS and frequency of ampli-
fication) were standardized by removing the mean and scaling to
unit variance before training. To control the amount of overfit-
ting to the training data, we used dropout regularization in the
first five hidden layers. The dropout rate was adjusted to a value
of 0.15 by trial and error. Lower values resulted in a higher val-
idation error, whereas higher values increased the training error
without further reducing the validation error. Figure 5 compares
observed and predicted mean AFs for nine randomly selected
training sites. The low training error is reflected in the good
match between observed and predicted mean AFs.

We used the trained MLP to predict mean site amplifica-
tions at the 66 test sites and obtained an MSLE of 0.128
(Table 1). Figure 6 compares the observed and predicted mean
amplifications at nine randomly selected test sites. The MSLE
at the displayed test sites ranges from about 0.040 for sites at
which the predicted AF is close to the observations (e.g.,
ISKH04, MIEH06, and KOCH13) to values above 0.150 for
sites at which the predicted AF does not reproduce the obser-
vation well (e.g., YMNH14, SRCH01, and YMTH07).
However, predicting the site response from a soil profile is
generally difficult due to multidimensional effects, modeling
inaccuracies, uncertainties in soil property estimates, and
effects of the downgoing wave (e.g., Bonilla et al., 2002;
Thompson et al., 2009, 2012; Zhu et al., 2020).

Although the test MSLE provides a quantitative estimate of
the residuals between predictions and observations, the

significance of this error cannot be assessed without compari-
son with a baseline solution. In ML, simple statistical models
(such as a linear regression), human judgement (e.g., Ng,
2018), or published state-of-the art models (e.g., Wang,
Walters, and Yu, 2020; Wang, Kashinath, et al., 2020) are typ-
ically used as a baseline. Regardless of the absolute value of the
test error, an ML model is considered useful if it outperforms a
reasonable or well-established baseline. For the presented case
of predicting surface-to-borehole AFs from the full soil profile,
several alternate solutions may be considered a baseline, for
example, empirical site amplification models based on the
VS30 (e.g., Seyhan and Stewart, 2014) or the theoretical 1D
SH AF (SH1D). Alternatively, a custom baseline may be
derived by fitting a shallow ML model to our training data.

Here, we use the theoretical SH1DAF for a vertically incident
plane wave as a baseline. The SH1D amplification represents an
obvious choice for the baseline because it is computed from the
same input features used to train the MLP (the full vertical
shear-wave velocity profile). Moreover, the SH1D method
allows for computation of the surface-to-borehole AF that we
want to predict, whereas empirical models typically predict
the amplification with respect to a reference site. Therefore,
the SH1D amplification represents the tool that engineering
seismologists would likely pick to solve the given problem.

Of course, more sophisticated baselines could be con-
structed, for example, by accounting for multidimensional
effects using 3D wave propagation simulations (e.g.,
Thompson et al., 2009; Hu et al., 2021); however, such meth-
ods rely on additional information that is not available for
most KiK-net sites.

We computed the SH1D amplification assuming a horizon-
tally layered structure and a vertically incident plane wave.
Densities and quality factors were derived from the shear-wave
velocity profiles using an empirical relation (Brocher, 2006).
Theoretical AFs were smoothed in the same way as observed
mean AFs. The MSLE between theoretical and observed AFs is
listed for each site in Figure 6 (as well as Fig. 5 for reference,
although we note that it makes little sense to compare training
losses with theoretical predictions). With the exceptions of
sites GIFH25 and SRCH01, the theoretical model results in
a larger prediction error than the NN.

Figure 4. Learning curve with mean absolute training and validation errors
during Adam optimization of the fully connected neural network (multilayer
perceptron [MLP]) for prediction of mean site response. The color version of
this figure is available only in the electronic edition.
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The MSLE of 0.22 between theoretical and observed
AFs for the 66 test sites (Table 1) is used as a baseline to assess
the NN’s performance, and it shows that the NN is generally
predicting mean AFs more accurately than the theoreti-
cal model.

Prediction of mean AFs
using the CNN
The convolutional CNN was
trained using observed mean
site amplifications for the same
596 training sites as for the
MLP. As with the MLP, we
adjusted dropout rates for the
CNN by trial and error to min-
imize the trade-off between
high-model bias (in case of
poor performance for training
sites) and high variance (in
case of overfitting). For the
CNN, we tuned dropout rates
to different values for each
layer. A dropout rate of 0.5
was used after the pooling layer
(Fig. 2), and dropout rates of
0.3, 0.15, and 0.10 were used
for the three subsequent, fully
connected hidden layers,
respectively.

The CNN was trained for
2000 epochs using a batch size
of 50 sites. The loss was
reduced from an initial value of
1.45 to a minimum of 0.043.
We used the trained model to
predict AFs for training and
test sites and obtained MSLE
values of 0.021 and 0.104,
respectively (Table 1). The
MSLE for predicted AFs at
training sites (0.021, Table 1)
is lower than the lowest mini-

mum value obtained during optimization (0.043). This dis-
crepancy is caused by dropout regularization. Dropout
regularization randomly eliminates neurons during training,
resulting in a relatively high training error. However, all neu-
rons are enabled during prediction (dropout rate is set to zero),
which results in a lower prediction error than training error.

Both MSLEs and MAEs at test sites are lower for the CNN
than for the MLP. Moreover, the CNN achieves a test MSLE
that is 50% lower than the baseline (Table 1). Figure 7 com-
pares observed, predicted, and theoretical (baseline) AFs for
the same nine test sites as shown for the MLP (Fig. 6). The
CNN results in more accurate predictions, especially for sites
YMNH14 (MSLE reduction from 0.146 to 0.028), MIEH08
(0.043–0.020), and GIFH25 (0.064–0.030).

A notable difference between the observations and the
SH1D baseline concerns the peak at the fundamental fre-
quency, in which the baseline frequently predicts much higher

Figure 5. Comparison between observed mean AFs (blue) and AFs predicted by the MLP (orange) for nine randomly
selected training sites. Solid green lines show theoretical 1D site AFs. Numbers in brackets next to the site name
give the training loss (mean squared logarithmic error [MSLE]) for the site. Green numbers in the upper left corner
show the baseline loss (based on the theoretical SH1D AF) for the site. The color version of this figure is available
only in the electronic edition.

TABLE 1
Errors between Observed and Predicted Amplifications*

Model MSLE (Train) MAE (Train) MSLE (Test) MAE (Test)

Baseline 0.216 2.005
MLP 0.011 0.451 0.128 1.543
CNN 0.021 0.595 0.104 1.307

*Baseline, theoretical SH1D amplification; CNN, convolutional neural network; MAE,
mean absolute error; MLP, multilayer perceptron; MSLE, mean squared logarithmic
error (loss).
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amplitudes than observed, for example, at sites IKSH04,
MIEH08, NGNH19, KSRH09, and YMTH07 (Figs. 6 and 7).
This discrepancy between theoretical and observed surface-
to-borehole amplification has been discussed in previous stud-
ies and attributed to the effects of the downgoing wave, lateral
heterogeneities, or the presence of strong velocity contrasts
below the downhole site (e.g., Bonilla, 2001; Thompson et al.,
2009; Zhu et al., 2020; Hu et al., 2021). Because the NNs are not
bound by any theoretical assumptions, they are less affected by
this problem and predict the peak of the amplifications based
on the training data.

Figure 8a shows the distribution of the MSLE obtained by
the baseline, MLP, and CNN at the 66 test sites. The CNN
clearly represents an improvement with respect to both the
MLP and baseline. For example, the CNN distribution peaks
at an MSLE of 0.05, with a median MSLE of 0.073. Baseline
(SH1D) errors are more uniformly distributed with a median
MSLE of 0.181. Compared with the MLP, the CNN achieves an
MSLE below 0.075 for more sites and errors above 0.225 for

fewer sites. We also computed
the change in MSLE between
the two NN designs and the
baseline for each site and plot-
ted the distribution of the
change of error (Fig. 8b).
With respect to the baseline,
the NNs results in an improve-
ment at most sites; the CNN
also outperforms the MLP in
terms of number of sites at
which an improvement is
observed.

We calculated the geometric
mean of the test MSLE over all
66 test sites at each of the 50
discrete frequencies (Fig. 9).
Prediction errors for the MLP
and CNN tend to be highest
at frequencies between 5 and
10 Hz, for which the geometric
mean of the error is ∼10 times
larger than at 1 Hz. Baseline
errors are highest between 2
and 10 Hz; they are above
the ANN errors throughout
the frequency band, but are
below the MLP for frequencies
below 0.5 Hz (Fig. 9a). In par-
ticular, the CNN performs bet-
ter than the baseline in the
frequency range between 2
and 10 Hz (Fig. 9b).

SUMMARY AND OUTLOOK
We have calculated mean observed AFs for 662 KiK-net ver-
tical arrays. 90% of the sites were assigned as training sites, with
the remaining 10% withheld as test sites. An MLP and a CNN
were trained to predict the observed AFs from a discretized
representation of the velocity profiles.

Both NN designs converged to a solution with minimal loss
and accurately reproduced the observed AFs at the training
sites. Although the quality of the prediction at the test sites
varied, both the MLP and the CNN outperformed predictions
based on the theoretical SH1D site response in terms of MSLE
between observed and predicted AFs. Predictions made by the
CNN resulted in an MSLE that was 50% lower than the SH1D
baseline and 25% lower than the predictions by the MLP.
Proper regularization and fine-tuning of the dropout rate
was found to be essential to obtaining good predictions at test
sites not used for training.

These results show that artificial NNs have the potential to
take advantage of the full velocity profile information for more

Figure 6. The same as Figure 5 but showing mean and predicted mean amplifications for nine randomly selected test
sites. The color version of this figure is available only in the electronic edition.
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accurate predictions of observed
AFs. Although a simple SH1D
AF does not represent the
state-of-the-art for site-specific
seismic-hazard analysis in engi-
neering seismology, it serves as
a useful benchmark that dem-
onstrates the limits of com-
monly made assumptions (in
particular, a horizontal 1D lay-
ered structure and a vertically
incident plane wave). An NN
that learns to predict AFs purely
from data is not bound by such
assumptions, and we have dem-
onstrated the level of improved
accuracy with respect to the
baseline that can be learned
from data.

In future work, we will also
evaluate the accuracy of the
NN-predicted AFs against
empirical site AFs, which are
typically based on the VS30.
Although our efforts in this
article were focused on the pre-
diction of mean AFs, future
work should address the predic-
tion of event-specific amplifica-
tion. Here, the effects of
incident wavefield characteris-
tics, scattering, and nonlinearity
would be captured by feeding
the network with earthquake
magnitude, hypocentral dis-
tance, and input signal metrics
(e.g., PGA, spectral accelera-
tions at different frequencies,
and duration). In the case of a
CNN, this requires a slightly
more complicated design with
mixed data inputs. We also
recommend for future work
exploring the use of information
on the multidimensionality of a
site structure.

DATA AND RESOURCES
Acceleration time series from
KiK-net strong-motion stations
(National Research Institute for
Earth Science and Disaster
Resilience [NIED], 2019) were

Figure 7. The same as Figure 6 but showing predictions by the CNN at the same test sites. The color version of this
figure is available only in the electronic edition.

(a) (b)

Figure 8. (a) Distribution of site-specific test MSLE obtained from baseline, MLP, and CNN results. (b) Distribution of
change in MSLE achieved using MLP and CNN with respect to the baseline (Base). The color version of this figure is
available only in the electronic edition.

Volume XX Number XX – 2021 www.bssaonline.org Bulletin of the Seismological Society of America • 9

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/doi/10.1785/0120200346/5259936/bssa-2020346.1.pdf
by 14171 
on 01 April 2021



downloaded from https://www.kyoshin.bosai.go.jp/. The data scraper for
KiK-net records was programmed in Python using the Requests library
https://requests.readthedocs.io/en/master/. The Apache Spark Unified
Analytics Engine for Big Data is available at https://spark.apache.org/.
KiK-net datafiles were read using the ObsPy Python Framework for
Seismology (Beyreuther et al., 2010, docs.obspy.org). The Pandas Data
Analysis Library for Python is available at https://pandas.pydata.org/.
The Keras deep learning library (Chollet, 2018) can be obtained at
https://keras.io. We used the Tensorflow backend for Keras (https://
tensorflow.org. The StandardScaler from the scikit-learn library
(Pedregosa et al., 2011) was used to normalize input data for the multi-
layer perceptron (MLP) (https://scikit-learn.org/). All websites were last
accessed in October 2020.
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