
SUPPLEMENTAL MATERIAL FOR1

3D 0-10 HZ PHYSICS-BASED SIMULATIONS OF THE 2020 MAGNA, UTAH2

EARTHQUAKE SEQUENCE3

DISCONTINUOUS MESH4

For all simulations in this project we use the 3D finite difference code AWP-ODC with support5

for discontinuous mesh (Nie et al., 2017) at the Oak Ridge Leadership Computing Facility6

(OLCF) using Summit GPU nodes. In order to maximize computational efficiency and to obtain7

sufficient resolution of the grid, we design the mesh with 3 blocks as shown in Fig. S1, which8

ensures at least 5 points per minimum wavelength throughout the model (minimum Vs=1259

m/s).10

POINT SOURCE MODEL FOR MAGNA AFTERSHOCK11

We follow Brune (1970) in our definition of the point source spectrum for the Mw4.59 Magna12

aftershock, with the Fourier moment rate spectrum expressed as13

Ω( f ) =
M0

1+( f/ fc)2 , (S1)

where M0 is the scalar moment in N ·m, and fc is the corner frequency determined by14

fc = kVS

(
16
7
· ∆σ

M0

) 1
3

= 0.49VS

(
∆σ

M0

) 1
3

,

(S2)

where k = 0.372 is Brune’s constant for S waves, Vs is the shear velocity around the point15

source in m/s, and ∆σ is the stress drop in Pa. After applying inverse Fourier transformation to16

Eq. (S1), the minimum-phase slip rate source time function is derived as17

Ω(t; fc) ∝ t · exp [−2π fct] ·H(t) , (S3)

where H(t) is the Heaviside step function.18
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LOW-VELOCITY TAPER METHOD19

The low-velocity taper (LVT) following Ely et al. (2010) is described as20

zr = z/zT ,

f (zr) = zr +b(zr − z2
r ) ,

g(zr) = a−azr + x · (c2 +2
√

zr −3zr) ,

VS(zr) = f (zr) ·VST +g(zr) ·VS30 ,

(S4)

where zT and zr are the tapering bottom depth and the depth ratio, respectively, a,b,c are three21

shape-controlling parameters, VST is the original Vs at zT , and VS30 is the time-averaged shear22

velocity in the top 30 m. Since the near-surface low velocity material is already included in the23

WFCVM, the LVT is only applied to the areas outside the basin, where the near-surface veloc-24

ities appear over-simplified in the CVM with surface Vs around 1400 m/s. Fig. S2 compares25

the 1D Vs profiles at the two rock stations NOQ and RBU (see Fig. 1(b) for locations) with26

and without the 1,000 m LVT, and Fig. S3 compares the surface Vs of the model area with and27

without the LVT and SSHs.28

CALCULATION OF REFERENCE STRAINS29

The reference strains are calculated based on an empirical relation following Darendeli (2001)30

as31

γr = (φ1 +φ2PI ·OCRφ3)σ
φ4
0 , (S5)

where φ1−4 are empirical constants, PI is the modified plasticity index, and OCR is the nor-32

mal consolidation factor. The resulting γr is in units of % when the confining pressure σ0 is33

converted to the standard atmosphere unit (atm), after being derived from the vertical stress34

component τzz and pore pressure σPP at depth h35

σ0 =−(τzz)−σPP

=


∫ h

z=0 [ρsoil(z)g] ·dz, (h ≤ hgw)∫ h
z=0 [ρsoil(z)g] ·dz−ρwaterg · (h−hgw), (h > hgw)

,
(S6)

where ρsoil(z) is the depth-dependent soil density, ρwater is the density of water, and hgw is the36
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depth to the ground water level. As an average model applied to the Salt Lake basin, we follow37

the parameter suggestions by Roten et al. (2012) and Table 8.12 of Darendeli (2001), where38

φ1−4 = 3.52 ·10−2 ±9.99 ·10−7, 1.01 ·10−3 ±4.16 ·10−9, 3.25 ·10−1 ±2.85 ·10−3, and 3.4839

·10−1 ± 2.20 · 10−4, respectively, while hgw is set to 3 m and OCR = 1. PI is set to 40% for40

V s30 < 300 m/s, 30% for 300 m/s <V s30 < 450 m/s, and 0% for V s30 > 450 m/s.41

The modulus reduction curve is described as in Darendeli (2001)42

G
Gmax

=
1

1+ γxy/γr
, (S7)

which builds a relation between the shear modulus ratio to the unloaded maximum strength43

G/Gmax and shear strain γxy, controlled by the reference strain γr, and G/Gmax = 0.5 when44

γxy = γr. The standard deviation σ of G/Gmax is estimated in Roten et al. (2023) as45

σ

[
G

Gmax

]
= exp(φ13)+

√
0.25

exp(φ14)
= 0.09638 , (S8)

where φ13 = −4.23 and φ14 = 3.62 are parameters from Equation (7.29) and Table 8.12 in46

Darendeli (2001). Thus, the upper and lower limits of the reference strain from around the47

mean (γr,mean) to one standard deviation (±1σ) can be found by solving Eq. (S7) for the shear48

strain γxy when49

G
Gmax

±σ =
1

1+ γxy/γr
±σ = 0.5 , (S9)

resulting in50

γr[±1σ] ∈ (γr,mean/1.478, γr,mean ·1.478) . (S10)

Similarly, for extreme cases within ±2σ and ±3σ,51

γr[±2σ] ∈ (γr,mean/2.2548, γr,mean ·2.2548) , (S11)

and52

γr[±3σ] ∈ (γr,mean/3.7425, γr,mean ·3.7425) , (S12)
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respectively. In our analysis, we calibrated the soil nonlinear effects by multiplying the scaling53

factors from Eqs. (S10) to (S12) onto the depth-dependent reference strain model across the54

nonlinear simulation domain (Figs. 11 to 13).55

RESOLUTION OF NONLINEAR SIMULATIONS56

Due to the reduction of shear moduli caused by soil nonlinearity and hysteretic behavior, as57

described in Eq. (S7), the mesh grid resolution required to maintain the same level of accuracy58

can vary from the linear regime to the Iwan nonlinear model. Fig. S9(a) shows the minimum59

ratio of the shear modulus at the end of the nonlinear simulation with the Darendeli’s reference60

strain-depth relations minus two standard deviations (G), relative to the undamped shear mod-61

ulus (G/Gmax). The shear modulus is reduced to about 1/10 of its undamped value in parts of62

the model region, with values as low as 0.09 at LKC and 0.4 at other stations (see Fig. S9(b)),63

corresponding to a minimum Vs of about 43 m/s, which requires a grid spacing of ∆h = 0.85 m64

to maintain 5 points per minimum wave length.65

To test whether our mesh accurately resolves the nonlinear damping at these sites, we con-66

ducted sensitivity tests at LKC where the largest PGA for the Magna mainshock was recorded67

and the largest modulus reduction is found. To save computational cost we carried out the tests68

in two dimensions, in a model 5 km along east-west from the surface to a depth of 2.3 km,69

using the synthetics from the 3D linear simulation at a depth of 1 km as input. We ensured that70

the 2D approximation is reasonable through comparison with the 3D model in the linear regime71

(Fig. S10). Fig. S11 shows Fourier spectra from nonlinear simulations (7 yield surfaces) and the72

optimal reference strain model (i.e. Darendeli’s (2001) -2σ) in this 2D model using ∆h = 2.5 m73

and ∆h = 0.85 m. The mean spectral difference between the synthetics with two grid spacings74

is 0.03 in log10 scale (i.e. ∼7% in linear scale), suggesting that the 3D simulations accurately75

resolve the nonlinear damping.76

CALCULATION OF SOIL-ROCK SPECTRAL RATIOS77

The concept of soil-rock spectral ratios is based on the frequency-domain model of ground78

motion79

Ri(ri, f ) = E( f )Si(ri, f )Di(ri, f ) , (S13)

where Ri is the ground motion spectral amplitude recorded at station i, and E, Si, and Di are80
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the source term, site amplification factor, and distance dependent term, respectively, while ri is81

the distance to the source. For a reference rock station (suffix re f ) with no site amplification82

(Sre f = 1), which is reasonably close to the soil station i and thus has a similar distance term Di83

and source effects E, the soil amplification at site i can be approximated from Eq. (S13)84

Si(ri, f )≈ Ri(ri, f )
Rre f (rre f , f )

. (S14)

For each event, either synthetics or observations, average horizontal Fourier spectra are used as85

Ri(ri, f ) (soil station) and Rre f (rre f , f ) (reference rock station) (Pankow and Pechmann, 2004)86

as87

Ri(ri, f )
Rre f (rre f , f )

=
Ri,1( f )+Ri,2( f )

Rre f ,1( f )+Rre f ,2( f )
, (S15)

where 1 and 2 represent 2 horizontal ground motion components. We generally follow Pankow88

and Pechmann (2004) in the window selection and windowing of the time series prior to the89

calculation of the Fourier spectra R( f ), applying a 15-sec data window starting 1.5 s before90

the S-wave arrival, a 10% Hanning taper at both ends of the time series, and a band-pass filter91

between 0.1 and 10 Hz.92

FILTER PARAMETERS93

For all simulations and recordings used in this study, we used a 2nd-order Butterworth filter94

with 2 forward passes.95
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SUPPLEMENTARY FIGURES114

Figure S1. Illustration of the resolution of the velocity model along depth using a 3-block discontinu-
ous mesh, showing that the minimum Vs in the CVM is sampled by at least 5 points per minimum Vs

wavelength (PPW).

7



Figure S2. Vs profiles with LVT at rock stations (a) NOQ, and (b) RBU, using a 1,000 m tapering depth
following Eq. (S4) and Ely et al. (2010). See Fig. 1(b) for station locations.
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Figure S3. Surface Vs across the modeling region (see white rectangle in Fig. 1(b)). (a) before and
(b) after adding the LVT and SSHs to the WFCVM. The stars depict the epicenters of the 2020 Magna
mainshock and the Mw4.59 aftershock, and the triangles are seismic stations.
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Figure S4. (see next page)
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Figure S4 (previous pages). Comparison of 0.1-10 Hz synthetics from our optimal model and obser-
vations for the Mw4.59 aftershock. (a) Velocity time series, with peak values for both synthetics and
observations listed in m/s, and (b) Fourier acceleration spectral bias, with ε depicting mean error over
all stations. See Fig. 1(b) for station locations.
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Figure S5. Comparison of synthetic (colored) and observed (black) acceleration time series (left panels)
and Fourier acceleration spectra (right panels) for the Mw4.59 aftershock at station FTT. Both sets of
synthetics are calculated in the WFCVM using the optimal Q model of QS = 0.05VS f 0.4 (Eq. (1)).
Additionally, the green time series include the effects of the LVT outside the basin (see Eq. (S4) and Fig.
1(b)), as well as the optimal SSH with vertical and horizontal correlation lengths of 400 m and 2,000 m,
respectively, Hurst number of 0.05 and 10% standard deviation. Both data and synthetics are band-pass
filtered between 0.1 and 10.0 Hz. Peak acceleration values are listed in m/s2 by the waveforms, and the
average absolute FAS errors in log scale are listed below the spectra. For station locations, see Fig. 1(b).
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Figure S6. GOF maps for 0.1-1.0 Hz PGA, PGV, DUR, and FS from our optimal linear simulation of
the Mw5.5 main shock. The epicenter is denoted by the star.
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Figure S7. Same as Fig. S6, but for synthetics and data band-pass filtered between 0.1-10.0 Hz.
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Figure S8. Comparison of synthetic and observed horizontal spectral amplification ratios for the Magna
main shock at stations (a) LKC, (b) ICF and (c) FTT, using NOQ as reference. Results are shown
for nonlinear simulations with the mean values of Darendeli’s (2001) reference strain-depth relation,
applied for Vs < 750 m/s, using 7 and 10 yield surfaces (green and blue spectra, respectively), as well as
for Vs <2,000 m/s and 7 yield surfaces (magenta curve). See Fig. 1(b) for station locations.

15



Figure S9. Shear modulus reduction G/Gmax during the 3D nonlinear simulations for the Magna main
shock (i.e., the ratio between the nonlinearly reduced and the linear shear modulus), using Darendeli’s
−2σ reference strain relation. (a) Distribution of final modulus reduction in this simulation domain,
showing the minimum G/Gmax ratio during the simulation. (b) Minimum shear modulus reduction ratios
during the nonlinear simulation at FTT, ICF, LKC and NOQ.

Figure S10. Comparison of synthetic and observed (left) velocity time series and (right) Fourier ac-
celeration spectra at LKC along the E-W component. Blue curves are from the 3D simulation, while
magenta curves are from the 2-step simulations, with the 2D simulation using synthetics from the 3D
linear simulation at a depth of 1 km as a plane wave source. See Fig. 1(b) for the station location.
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Figure S11. Comparison of 2D synthetic (top) Fourier acceleration spectra at LKC for ∆h = 2.5 m and
∆h = 0.85 m, and (bottom) the spectral ratio between the spectra, in units of log10.
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