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S U M M A R Y 

The resolution of velocity models obtained b y tomo graphy v aries due to multiple factors and 

variables, such as the inversion approach, ray coverage, data quality, etc. Combining velocity 

models with different resolutions can enable more accurate ground motion simulations. Toward 

this goal, we present a novel methodology to fuse multiresolution seismic velocity maps with 

probabilistic graphical models (PGMs). The PGMs provide segmentation results, correspond- 
ing to various velocity intervals, in seismic velocity models with different resolutions. Further, 
by considering physical information (such as ray path density), we introduce physics-informed 

probabilistic graphical models (PIPGMs). These models provide data-driven relations between 

subdomains with low (LR) and high (HR) resolutions. Transferring (segmented) distribution 

information from the HR regions enhances the details in the LR regions by solving a maximum 

likelihood problem with prior knowledge from HR models. When updating areas bordering 

HR and LR regions, a patch-scanning policy is adopted to consider local patterns and avoid 

sharp boundaries. To e v aluate the efficacy of the proposed PGM fusion method, we tested 

the fusion approach on both a synthetic checkerboard model and a fault zone structure im- 
aged from the 2019 Ridgecrest, CA, earthquake sequence. The Ridgecrest fault zone image 
consists of a shallow (top 1 km) high-resolution shear-wave velocity model obtained from am- 
bient noise tomography, which is embedded into the coarser Statewide California Earthquake 
Center Community Velocity Model version S4.26-M01. The model efficacy is underscored 

by the deviation between observed and calculated traveltimes along the boundaries between 

HR and LR re gions, 38 per cent less than obtained by conv entional Gaussian interpolation. 
The proposed PGM fusion method can merge any gridded multiresolution velocity model, a 
valuable tool for computational seismology and ground motion estimation. 

Key words: Image processing; Machine learning; Seismic tomography. 
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 I N T RO D U C T I O N  

he resolution of velocity models varies due to inversion ap-
roaches, ray coverage, etc. For example, large-scale community
elocity models (CVMs) are typically characterized by relatively
ow resolution, while high-resolution velocity models are limited to
maller areas with dense station coverage. Combining such velocity
odels with different resolutions is useful to improve CVMs, for

xample for ground motion estimation or dynamic rupture mod-
lling, where a range of scales is needed (e.g. Yeh & Olsen 2023 ).
o wever , when models with different resolutions are directly su-
erimposed, sharp boundaries caused by misaligned patterns may
roduce artefacts in the modelled seismic waves. The problem of
using low- and high-resolution models is conventionally addressed
y extracting patterns from various models and utilizing them as
oundary conditions for wave propagation. Border merging has
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
een performed by Gaussian smoothing (Wu & Janson 2017 ) and
y defining a weighting region (Ajala & P ersaud 2021 ). Ho wever ,
his process depends on experts manually choosing models, and
ne-tuning parameters is often time-consuming. 
The exploration of multiscale problems has surged across diverse

eophysical fields, encompassing full wav e inv ersion, ground mo-
ion modelling and surface-wave tomography. A pivotal discovery
s the scale-dependent nature of anisotropy, a finding that has sub-
tantial implications for how we perceive the structure of the Earth
Van Houtte et al. 2006 ). Analyses from both physical and signal
rocessing viewpoints bring to light key challenges associated with
he effect of spatial heterogeneities on seismic wave propagation.
hese studies have shown that seismic waves cannot distinguish
etween large-scale anisotropy and small-scale isotropic hetero-
eneities much smaller than a wavelength (Barbarossa & Sardellitti
020 ), enhanced by the potent spatial and directional dependence
oyal Astronomical Society. This is an Open Access 
 https://creati vecommons.org/licenses/b y/4.0/ ), which 
 the original work is properly cited. 1353 
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of tomographic resolution. Such dependency may provoke space- 
and direction-oriented smoothing (Dhamo et al. 2020 ), eliciting ap- 
parent anisotropy fluctuations that bear no intrinsic connection to 
Earth’ s anisotrop y. 

The construction of multiscale models has traditionally used tac- 
tics such as multiscale element fitting (Fichtner et al. 2013 ), Gaus- 
sian kernel smoothing (Fang & Zhang 2014 ) and adaptive filtering 
methods, such as sparse learning (Zhu et al. 2015 ; Bianco & Ger- 
stoft 2017 , 2018 ). Zhang & Ben-Zion ( 2024 ) proposed a data-driven 
DL method for transformations between seismic velocity models of 
different resolutions, which involves a linear decomposition of an 
input signal using a small set of basis signals, or atoms, learned from 

HR and LR pairwise data. Although these methods hav e prov ed ef- 
ficient, they might not fully grasp the vast complexity of the earth’s 
structure. 

Probabilistic Graphic Methods (PGMs) can process images with 
complex structures, owing to their power to extract the underlying 
relations among images (Shuman et al. 2013 ; Ortega et al. 2018 ). In 
modelling pixel points and their interactions using a graph, a struc- 
tured environment emerges, shaped by the spatial characteristics of 
the pixels’ geometric connections in various applications, includ- 
ing denoising (Liu et al. 2018 ), segmentation (Zhang et al. 2022a ) 
and seismic detection problems (Cannav ò et al. 2017 ). Beyond con- 
ventional graphs, PGMs have been extended to high-dimensional 
spaces, such as multilayer graphs (Das & Ortega 2020 ) and hyper- 
graphs (Zhang et al. 2022b ). Furthermore, graph neural networks 
(GNNs) and graph convolutional networks (GCNs) are important 
tools in image processing and computer vision (van den Ende & 

Ampuero 2020 ; Kim et al. 2021 ). Bayesian methods provide a 
framework for modelling uncer tainty, lear ning from data and mak- 
ing predictions. They have found broad applications in a variety 
of seismic fields, such as seismic tomography (Zhao et al. 2022 ), 
full-wav e inv ersion (Zhang et al. 2023 ) and ground motion pre- 
diction (Mu & Yuen 2016 ). Among all the PGMs and Bayesian 
methods, Markov Random Fields (MRFs) constitute a popular and 
ef fecti ve approach for super vised str ucture lear ning tasks involving 
the mapping between complex geometric structures (Murphy 2001 ). 
MRFs provide an image restoration procedure, first suggested by 
Geman & Graffigne ( 1986 ), which is based on Bayesian inference 
for a spatially stochastic model. In contrast to convolution-based 
methods, the MRF procedure yields an optimal and mathematically 
tractable result for image processing (Blake et al. 2011 ; Zhou et al. 
2024b ). 

Recentl y, man y novel methodolo gies, within the category of 
physics-infor med machine lear ning (Gou et al. 2023 ) have gained 
much attention. These methods combine conventional machine 
learning (primarily neural networks (Li et al. 2023 )) and weighting 
mechanisms. They adapt the behaviour of the learning models to 
the non-linear features of the solution and introduce physical infor- 
mation as a guide, e ventuall y improving the current limitations of 
learning models. 

Combining the physics-informed mechanism and the MRF 

model, we propose a physics-informed probabilistic graphical 
model (PIPGM) that captures the relations between subdomains 
with multiple resolutions. The proposed method is inspired by 
the pro gress achie ved in image super-resolution (Cheung et al. 
2018 ; Zhou et al. 2024a ) and image editing (Dhamo et al. 2020 ; 
Zhang et al. 2018 ), and is designed to fuse seismic velocity models 
with probabilistic graphical models (PGMs). We focus on models 
with well-defined, separate high-resolution (HR) and low-resolution 
(LR) areas, to enhance local HR structure and simultaneously pre- 
serve global smoothness in the fused model. By transferring the 
information from the HR subdomain, the details in the LR areas 
are enhanced by solving a maximum likelihood problem with prior 
knowledge from the HR areas. Evaluation tests on both a checker- 
board and a fault zone model derived from the 2019 Ridgecrest, CA, 
ear thquake are perfor med to demonstrate its ef ficacy. Quantitati vel y, 
model efficacy is evaluated by the deviation between observed and 
calculated traveltimes in fused models, relative to those from di- 
rectly superimposed LR and HR models. Tests demonstrate that 
PIPGM is generally superior to widely used conventional methods 
(see Section 6 ). 

The contributions of this article are two-fold: (1) we introduce a 
PIPGM fusion method for combining velocity maps with various 
resolutions and (2) we introduce physical information as a guide for 
the graph learning process. 

2  F U N DA M E N TA L  M O D E L  S E T U P  

The objective is to estimate the true velocity field A from A LR 

(low-resolution) and A HR (high-resolution) models, focusing on 
optimal merging of their borders (see Fig. 1 ). A discrete class label 
map links the spatial velocity field together. It is initialized from a 
continuous velocity map A and a 6-cluster discrete label map X . 
Each pixel, described by an ( i, j) coordinate, contains a label X i, j 

and a velocity A i, j , with velocities of the same label following the 
Gaussian distribution N ( μn , σ

2 
n ) . Thus, in a graph, velocities A are 

on top of labels X (Fig. 2 ). d represents all possible labels of X i, j 

(namely, d = { 1 , 2 , 3 , 4 , 5 , 6 } here), and D represents all possible
combinations of labels X for the entire map. The velocity map A is 
connected by class labels X . 

3  G AU S S I A N  M I X T U R E  M O D E L  ( G M M )  

We use Gaussian mixture model (GMM) clustering to assign each 
continuous velocity pixel A i, j a discrete label X i, j (Fig. 3 ). We 
utilize these discrete labels to ensure the preservation of spatial 
coherence and the integrity of class boundaries, both essential for 
accurate data interpretation and model combining. GMM clustering 
is a widely used probabilistic clustering technique. In this model, 
data points are assumed to be generated from a mixture of a fi- 
nite number of Gaussian distributions with unknown parameters 
(Shahrabi et al. 2016 ). Clustering aims at identifying these param- 
eters, thus segmenting the data into clusters, each represented by 
a Gaussian distribution. The GMM clustering can be implemented 
using the Expectation-Maximization (EM) method. Here, the con- 
tinuous velocity pixel is denoted by A i, j and the corresponding 
labels by X i, j . The algorithm is described as follows: 

(i) Initialization: Define N = 6 clusters (the selection of cluster 
number will be discussed in Section 6.2 ) and initialize their means 
μn , variance σn and mixing coefficients πn are initialized either 
randomly or based on prior knowledge. 

(ii) E-Step: Compute each data point’s responsibility p( x i ) , the 
probability that belongs to the cluster n , using: 

p( x i ) = 

πn N ( A i, j | μn , σn ) ∑ N 
n = 1 πn N ( A i, j | μn , σn ) 

, 

(iii) M-Step: Update parameters μn , σn and πn to maximize 
observed data’s log-likelihood: 

μnew 
n = 

1 

N n 

N total ∑ 

i= 1 
P ( X i, j ) A i, j , (1) 
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Figure 1. (a) Excerpt of S -wave velocities from the Southern California Earthquake Center (SCEC) Community Velocity Model (CVM) version S-4.26 
(hereafter referred to as the low-resolution (LR) CVM) at 0.5 km depth around the Ridgecrest area. (b) High-resolution (HR) S -wave map from 1 Hz Rayleigh 
w ave tomo graphy from Zhou et al. ( 2022 ). (c) A direct superposition of the HR and LR models. These tw o models share some patterns in the lo w-velocity 
zones, but there are many mismatched detailed patterns where the two models overlap, which results in sharp and misaligned boundaries in those areas. PIPGM 

is applied to the mismatched boundary areas between the two red bounding boxes; note that the pixels in this area belong to the ef fecti v e v ertices set V . 

Figure 2. A 6-cluster Gaussian Mixture model clustering is applied on the continuous velocity map A (left-hand panel), and this derives a 6-cluster discrete 
label map X (right-hand panel). The pixels with similar velocity information have been assigned the same label. 

Figur e 3. Each pix el has a continuous velocity value a i, j and a discrete label mask x i, j . The object function designed for MAP estimation has two parts: (1) 
the data cost θ0 (0th-order neighbouring potential) that forces the pixels with the same label to follow the same Gaussian distribution and (2) the smoothness 
cost θ1 (1st-order neighbouring potential) that promotes smoothness among neighbouring pixels (Koller & Friedman 2009 ). 
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Figure 4. The neighbourhood system N i, j (marked in grey/black) of the 
given centre node ( i, j) (marked in black). The 1st-, 2nd- and 3rd-order 
neighbourhood systems of node ( i, j) are marked with numbers ‘1’, ‘2’, ‘3’ 
and they can be represented as N 

1 
i, j , N 

2 
i, j and N 

3 
i, j . 
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σ new 
n = 

1 

N n 

N total ∑ 

i= 1 
P ( X i, j )( A i, j − μn )( A i, j − μn ) 

T , (2) 

π new 
n = 

N n 

N total 
, (3) 

(iv) Convergence: Stop if parameters or log-likelihood change is 
below a threshold or a maximum iteration count is reached. Assign 
A i, j to the cluster maximizing P ( X i, j ) . 

4  M R F  

4.1 Bayesian estimation framework 

Given the prior probabilities P ( X ) of label X and the likelihood 
densities P ( A | X ) of the observed velocity A , the posterior prob- 
ability is computed using the Bayes rule: 

P ( X | A ) = 

P ( A | X ) P ( X ) 

P ( A ) 
∝ P ( A | X ) P ( X ) . (4) 

Here, P ( A ) , the probability density function (PDF) of A , is a fixed 
probability distribution (for given A ) and does not affect the max- 
imum a posteriori (MAP) estimation solution. The Bayesian la- 
belling problem requires finding the MAP configuration. The MAP 

of labelling for observation A is given by: 

X 

∗ = arg max 
X ∈ D 

P ( X | A ) , (5) 

where D denotes a set of possible candidates of the discrete labels 
X , and A represents the observation of the continuous velocities. 

We need the prior probabilities and likelihood functions to derive 
the MAP solution. The likelihood function P ( A | X ) depends on 
the noise statistics and the underlying transformation from truth to 
observation. 

4.2 Neighbourhood system in MRF 

The MRF, a model that analyses spatial relations, uses a neighbour- 
hood system (Li 1994 ), defined as N = { N i, j | ∀ ( i, j) ∈ V} (shown
in F ig. 4 ), w here V contains all pixel indices and N i, j includes 
neighbouring pixels. The neighbouring system of the given pixel 
with index ( i, j) can be decomposed as the union of 0th-, 1st-order, 
· · · neighbouring systems as 

N i, j = N 

0 
i, j ∪ N 

1 
i, j ∪ · · · , (6) 

and we define the n th-order neighbouring system of ( i, j) as 

N 

n 
i, j = { ( i ′ , j ′ ) | | i − i ′ | + | j − j ′ | = n } , (7) 

which means ( i ′ , j ′ ) and ( i, j) have a Manhattan distance (Liu et al. 
2013 ) of n . The pair ( V, N ) constitutes a graph, and the neigh- 
bouring system N for the pixel ( i, j) consists of the centre node 
(0th-order neighbouring system) N 

0 
i, j = { ( i, j) } and a pair of neigh- 

bouring pixels N 

1 
i, j = { ( i ′ , j ′ ) } . To avoid artefacts at the boundary, 

we expand the image’s boundaries by one pixel in all directions, 
where the values of the outermost pixels are directly replicated. 

The MRF is on D with respect to N if (1) P ( X i, j ) > 0 , ∀ X i, j ∈
d, ∀ ( i, j) ∈ V (positivity) and (2) P ( X i, j | X i ′ , j ′ , ( i ′ , j ′ ) ∈ V) =
P ( X i, j | X i ′ , j ′ , ( i ′ , j ′ ) ∈ N i, j ) . Satisfying condition (1) above guar-
antees the model to be a random field. Condition (2) is the Markov 
local property. Considering that the label variable X depends on 
velocity A and is unobservable, it is assumed that the distribution 
of P ( X | A ) follows exponential distributions, using Bayes’ rule and 
the conjugate distribution property (George et al. 1993 ). 
4.3 MRF prior and posterior ener g y 

A model can be considered a valid MRF if and only if the prob- 
ability distribution P ( X ) of the configurations is an exponential 
distribution with normalization, defined as the following form 

P ( X ) = 

1 

Z 1 
e −U prior ( X ) , (8) 

where Z 1 is a normalizing constant, and U prior ( X ) is the prior energy 
[section 4.2 in Koller & Friedman ( 2009 )]. 

The prior energy U prior ( X ) can be expressed as the summation of 
neighbouring potentials 

U prior ( X ) = 

∑ 

n ∈ N 
θn ( X ) = 

∑ 

{ ( i, j) }∈ N 0 i, j 

θ0 

(
X i, j 

)

+ 

∑ 

{ ( i ′ , j ′ ) }∈ N 1 i, j 

θ1 

(
X i, j , X i ′ , j ′ 

) + · · · , (9) 

where N is the set of all the possible neighbouring systems, and 
N 

0 
i, j and N 

1 
i, j denotes the 0th- and 1st-order neighbouring systems, 

with θ0 and θ1 representing the respective potentials. The 0th-order 
neighbouring system consists of the ensemble of all feasible indices 
( i, j) , identified as the central pixel. This study focuses e xclusiv ely 
on the neighbouring potentials of 0th and 1st order while truncating 
higher order potentials as delineated in eq ( 9 ). 

Because we assume that the velocities A with given labels X fol- 
low Gaussian distributions, the likelihood function can be expressed 
in an exponential format 

P ( A | X ) = 

1 

Z 2 
e −U like ( A | X ) , (10) 

where U like ( A | X ) is called the likelihood energy. According to the 
Bayes rule eq. ( 4 ), the posterior probability must be an exponential 
distribution 

P ( X | A ) = 

1 

Z 

e −U post ( X | A ) , (11) 

3 
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here Z 2 and Z 3 are normalization constants. Taking the ne gativ e
ogarithm in eqs ( 10 )–( 11 ) gives the posterior energy 

 post ( X | A ) = U prior ( X ) + U like ( A | X ) + C, (12) 

here C is a constant related to the normalization constants Z 1 , Z 2 

nd Z 3 . Hence, given a fixed A , X is also an MRF on d with respect
o N . The MAP solution is equi v alentl y found by 

X 

∗ = arg min 
X ∈ D 

U post ( X | A ) , (13) 

hich minimizes the ne gativ e log-likelihood problem of eq. ( 11 ). 
In summary, the MRF modelling process consists of the follow-

ng steps: Defining a neighbourhood system N , defining the prior
otentials θ0 , deriving the likelihood energy U like ( A | X ) and deriving
he posterior energy E( X ) (which can be expressed as the summa-
ion of neighbouring potential functions). Eqs ( 10 )–( 13 ) show that
e can express the posterior probability P ( X | A ) into the prior en-
rgy U prior ( X ) (which can be measured by multiple potentials) and
he likelihood function energy U like ( A | X ) , and this gives a good
eason for using MRF priors, which means that we can measure
onditional probabilities P ( X | A ) without knowing their specific
xpression. 

 P I P G M  

.1 Physics-informed mechanism 

IPGM follows a first-order MRF setting (Fig. 4 ) where each ran-
om variable has four neighbours on which it is conditionally depen-
ent. The full conditional probability of the discrete random variable

X i, j ∈ { 1 , . . . , 6 } is the exponential of the sum of potentials (four
st-order neighbouring potentials θ1 between cluster labels and one
th-order centre data potential θ0 between cluster label and velocity)
n conventional MRF settings. In image process problems, optimiz-
ng the entire map can be broken down into several suboptimization
roblems that iterati vel y optimize each pixel (Pulli et al. 2012 ).
nserting eq. ( 9 ) into eq. ( 12 ), we have 

− log p( X i, j | A i, j ) = U post ( X i, j | A i, j ) 

∝ θ0 ( X i, j , A i, j ) 

+ 

∑ 

( i ′ , j ′ ) ∈ N i, j 

θ1 ( X i, j , X i ′ , j ′ ) + C, (14) 

here C is a constant related to normalization factors Z 1 , Z 2 and
Z 3 (see eqs 8 , 10 and 11 ), and 

θ0 

(
X i, j , A i, j 

) = 

( A i, j − μn ) 2 

σ 2 
n 

(15) 

s the 0th-order neighbouring potential (Li 2012 ) (also known as
he data cost function) that relates X i, j with the observed velocity
ata A i, j . μn and σ 2 

n are the mean and variance of all pixels with the
ame cluster label n = X i, j . It promotes that continuous velocity
alues A sharing pixels with the same discrete label X follow the
ame Gaussian distribution. 

θ1 

(
X i, j , X i ′ , j ′ 

) = 1 − δ( X i, j , X i ′ , j ′ ) (16) 

s the 1st-order neighbouring potential (Li 2012 ) (also known as the
moothness cost function) that relates X i, j to the 1st-order neigh-
ouring variable X i ′ , j ′ (see Fig. 4 ). This function encourages the
eighbouring pixels to share the same discrete label X i, j , promot-
ng the model’s local smoothness. 
The ef fecti v eness of conv entional MRF approaches, or those
ased on potential functions, may be constrained when applied
o complex geological structures. Assigning different neighbouring
ixels with various importance weights based on physical informa-
ion (also known as the physics-informed mechanism) can effec-
i vel y remove the anisotropic features of the model gradients. This
pproach can significantly improv e inv ersion results, particularly in
he context of geological structure. 

In seismic tomography, the coverage of the ray path varies, with
he coverage of the densest ray path usually leading to more reliable
stimations of velocities. Here, we introduce a confidence score
 R i, j based on the logarithmic format of the ray density for each
ixel: 

 R i, j = αR log ( D i, j + 1) + βR , (17) 

here D i, j ∈ [0 , 315] is the number of ray paths through a given
ixel. The logarithmic scaling parameters αR and βR are empirically
hosen as 0.08 and 0.90, respecti vel y, resulting in v R i, j ∈ [0 . 9 , 1 . 1] .

We combine the gradient information from both the LR and HR
aps as the prior estimation of the sharpness of the local patterns (as

hown in Fig. 5 ). The gradient is calculated by the Prewitt operator
pproximating the 1st-order deri v ati ves of 2-D images (Zuniga &
aralick 1987 ). The operator uses two 3 × 3 kernels convolved with

he original image to calculate approximations of the deri v ati ves—
ne for horizontal changes and one for vertical. The kernels for the
rewitt operator can be represented as 

K 

x = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

−1 0 1 

−1 0 1 

−1 0 1 

⎤ 

⎥ ⎥ ⎥ ⎦ 

, K 

y = 

⎡ 

⎢ ⎢ ⎣ 

−1 −1 −1 

0 0 0 

1 1 1 

⎤ 

⎥ ⎥ ⎦ 

. (18) 

he convolution of these kernels ( K 

x and K 

y ) with the original
mage yields two gradient images, one for the x -direction ( G 

x ) and
ne for the y -direction ( G 

y ). 
Once G 

x and G 

y have been determined, we can find the gradient
agnitude G i, j at the pixel with index ( i, j) as 

G i, j = 

√ 

G 

x 
i, j 

2 + G 

y 
i, j 

2 
. (19) 

he resulting image G is a gradient image showing the intensity of
he edge. We applied the Perwitt operator on the LR and HR maps to
enerate the gradient images G 

LR and G 

HR . We empirically choose
he weighting parameter λ = 0 . 2 ( 0 ≤ λ ≤ 1 ) for balancing the LR
nd HR gradients: 

G 

′ 
i, j = (1 − λ) G 

LR 
i, j + λG 

HR 
i, j . (20) 

he overall range of the pixel values inside the gradient matrices
G 

LR and G 

HR is [0.05,0.68]. The scaling parameters αG 

and βG 

are
mpirically set as 0.36 and 0.85, respectively, and this guarantees
 G i, j ∈ [0 . 9 , 1 . 1] : 

 G i, j = αG 

(
1 − G 

′ 
i, j 

)
+ βG 

. (21) 

enerally, the larger the gradient weight term v G i, j , the lower the
mportance of the local smoothness cost. The gradient weight term
 G i, j is joined with the previous ray-density weight v R i, j , defining a
hysics-informed weight ω i, j 

 i, j = v R i, j v G i, j . (22) 
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Figure 5. (a) LR CVM around the Ridgecrest area. (b) HR S-wave map from 1 Hz Ra yleigh wa v e tomography. P anels (c) and (d) corresponding gradient maps 
of (a) and (b), respecti vel y. In the gradient maps, brighter (darker) areas indicate that velocities change sharply (slightly). 
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With the parameters chosen above, the range of the physics- 
informed weight is [0.81,1.21] with a mean of around 1. The 
physics-informed weight ω i, j can adapti vel y assign a larger weight 
to the trusted nodes based on existing physical information. We 
used ray-path density and gradient information, both exhibiting 
pronounced anisotropic characteristics (as shown in Figs 5 and 9 ), 
thereby facilitating the model’s capability to explore more complex 
formations within these regions. Assigning the physics-informed 
weight in eq. ( 14 ), we obtain the posterior probability function in 
the PIPGM 

− log p( X i, j | A i, j ) ∝ ω i, j θ0 ( X i, j , A i, j ) 

+ 

∑ 

( i ′ , j ′ ) ∈ N i, j 

ω i ′ , j ′ θ1 ( X i, j , X i ′ , j ′ ) + C, (23) 

where C is a constant related with to normalization factors Z 1 , Z 2 

and Z 3 (see eqs 8 , 10 and 11 ). The objective function of the MAP 

problem of X i, j becomes 

X 

∗
i, j = arg max 

X i, j 

p( X i, j | A i, j ) 

= arg min 
X i, j 

ω i, j θ0 ( X i, j , A i, j ) 

+ 

∑ 

( i ′ , j ′ ) ∈ N i, j 

ω i ′ , j ′ θ1 ( X i, j , X i ′ , j ′ ) + C. (24) 

5.2 Mark o v Chain Monte Carlo (MCMC) and Gibbs 
sampling 

MCMC is a statistical method used to sample probability distribu- 
tions (Melas & Wilson 2002 ; Sambridge & Mosegaard 2002 ). Gibbs 
sampling is a specific MCMC algorithm that iterati vel y samples a 
multi v ariate probability distribution from the conditional distribu- 
tions of each variable given the current values of the other variables 
(Carlo 2004 ). Combining MCMC with Gibbs sampling enables es- 
timating complex probability distributions without explicit knowl- 
edge of the distribution. 

We use the MCMC method with Gibbs sampling to solve 
eq. ( 13 ). The algorithm assigns a discrete label to each pixel, cre- 
ating a map-wide label distribution overview. This enables cal- 
culating the discrete label probability P ( X i, j = n ) by finding the 
frequency of each label n in Step 10, giving the map’s label distri- 
bution. In Step 12, the continuous variable A i, j is sampled from 

a Gaussian mixture model (GMM), allowing velocities beyond 
a single label’s distribution and considering neighbouring clus- 
ters. In the MRF structure, the update is achie ved b y calculating 
the probability for each of the possible labels n ∈ { 1 , · · · , 6 } at 
( i, j) using eq. ( 23 ) and randomly selecting from this distribution 
(see Fig. 6 ). 

The velocity map A is initialized with the superimposed HR and 
LR velocity maps, see Figs 9 (a1) and (b1), and the label map X is 
initialized with a Gaussian mixture model clustering with the total 
cluster number N = 6 (will be discussed in Section 6.1 ), similar to 
Figs 9 (a3) and (b3). All velocities with the label n follow the same 
Gaussian distribution N ( μn , σ

2 
n ) . The expectation-maximization 

(EM) algorithm (McLachlan & Krishnan 2007 ), an iterative method 
to find MAP estimates of parameters, updates Gaussian parameters 
μn and σ 2 

n . The termination criterion is either reaching 10 000 iter- 
ations or observing that the cumulative absolute difference across 
all pixels between consecutive iterations falls below 0.1 km s −1 , 
whiche ver is achie ved first. The algorithm has been summarized in 
Algorithm 1. 
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Figure 6. The pipeline of the iterative update policy for both pixel labels 
(discrete class labels) and pixel values (continuous velocity values). 
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lgorithm 1 MCMC Method for MRF 

. Input: A L R and A H R 

. Initialize the velocity model A by superimposing A H R over A L R 

Initialize X , μn and σn with Gaussian Mixture Model (GMM) clustering
. for each EM iteration do 
. Construct PIPGM 

. for t = 1 to max iteration T do 

. (E-Step) Gibbs Sampling 

. for each pixel ( i, j) = (1 , 1) to the maximum index ( I, J ) do 
(updating all the discrete labels X i, j ) 

. X 

( t+ 1) 
i, j ∼ P 

(
X i, j | X 

( t+ 1) 
1 , 1 , . . . , X 

( t+ 1) 
i, j−1 , A 

( t) 
i, j , X 

( t) 
i, j+ 1 , . . . , X 

( t) 
i, j 

)

. end for 
0. Update P ( X i, j = n ) = 

N n 
N total 

, where N n is number of pixels with 

label n and N total is number of pixels. 
1. for each pixel ( i, j) = (1 , 1) to the maximum index ( I, J ) do 

(updating all the continuous velocities A i, j ) 
2. A i, j ∼

∑ 6 
n = 1 P ( X i, j = n ) N ( μn , σ

2 
n ) 

3. end for 
4. (M-Step) Update Gaussian parameters μn and σ 2 

n 

with the sample mean μn = 

1 
N n 

∑ 

X i, j = n A i, j and sample 

variances σ 2 
n = 

∑ 

X i, j = n ( A i, j −μn ) 2 

N n 
5. end for 
6. end for 

7. return X , A (for each pixel) 

 E X P E R I M E N T S  

o e v aluate the ef ficacy of the PGM fusion method, we use both
 checkerboard model and the fault zone structure imaged from
he 2019 Ridgecrest, CA, earthquake sequence. The Ridgecrest
ault zone image consists of a shallow (representing a depth
f 0.5 km) high-resolution Rayleigh wave model (Zhou et al.
022 ), from which the S -wave velocity is approximated by dividing
y 0.9. 

Fig. 7 shows the smoothed results with different smoothing levels.
he aggressive, simple smoothing policy in Fig. 7 (c) (7 × 7 average
lter) removes the sharp boundaries while the details are lost. Simple
nd mild smoothing in Fig. 7 (d) (3 × 3 average filter) preserves
he details together with the artificial boundaries. It is essential
o achieve a trade-off between the two cases, this is the aim of
IPGM. To assess the balance between traveltime among stations
nd their residuals, 36 e v aluation points (marked as red ‘X’, with 10
ituated along each edge) are positioned at the boundary dividing
he LR and HR zones. These residuals gauge the extent of detailed
nformation retained in the merged velocity model relative to the
R maps. 

.1 Gra phical structur e order test 

n an MRF, the variables are represented as nodes in the graph, and
heir dependencies with the neighbours are decided by the truncation
rder in eq. ( 6 ). We name the MRF with the neighbouring system
runcated at n th order as ‘ n th order MRF’ for brevity. A 1st-order
eighbouring system structure is a subset of nodes in which every
wo distinct nodes are directl y adjacent. Usuall y, the neighbouring
ystem’s order significantly affects the model’s smoothing results.
f an MRF model is based on a first-order neighbouring system,
t can account for interactions between immediate neighbours. In
he context of image smoothing, it results in the enforcement of
ocal smoothness, where each pixel is encouraged to be similar to
ts immediate neighbours. When a model involves a higher-order
eighbouring system (the Manhattan distance of the pixels in this
et from the centre pixel may be greater than 1), it can capture
ore complex relations and dependencies among variab les. Higher -

rder MRFs can enforce smoothness over larger regions, allowing
he model to preserve the high-level structures (usually related to
he low-frequency patterns) and avoid sharp boundaries or noisy
etails. 

Since information from a wider range of neighbours is consid-
red, higher-order MRFs can be computationally more intensive in
ne iteration and may reach the optimum with fewer learning itera-
ions. On the other hand, first-order MRFs are simple and efficient,
nd they can sometimes preserve some noisy details. The choice
etween first-order and higher-order MRFs depends on the specific
equirements of the task and the trade-off between model complex-
ty and computational efficiency. In the velocity fusion problem,
e demonstrate the fused models with 1st-, 2nd- and 3rd-order
RF structures in Fig. 8 . Considering that the Ridgecrest model
easures the structure from a relati vel y limited region and that we

refer the rich detailed structures from the HR model, we choose the
st-order MRF neighbouring structure in the following comparison
xperiments. 
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Figure 7. (a) LR model (Same as Fig. 1a). (b) Same as Fig. 1(c). (c–d) Combined LR and HR models, smoothed by (c) 7 × 7 and (d) 3 × 3 average filters. (e) 
Synthetic stations (red ‘X’s) are deployed on the boundaries between HR and LR models for e v aluation. 
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6.2 Cluster number test 

The number of GMM clusters influences the model complexity and 
interpretability of the results. More clusters result in a more complex 
model, which can capture intricate data structures better and lead to 
more detailed insights into the data. Ho wever , it increases the risk 
of overfitting. 

The optimal number of clusters is crucial in GMM and other clus- 
tering techniques. Several methods help determine an appropriate 
number of clusters, such as the Akaike Information Criterion (AIC), 
the Bayesian Information Criterion (BIC) and the silhouette score. 
These methods balance the trade-off between the goodness-of-fit 
and the complexity of the model. 

For this experiment, we tested and compared the cluster number 
sequences N ∈ { 3 , 4 , 5 , 6 , 7 , 9 } , which is pre v alent in practical uses
of MRFs. Fig. 10 shows that the larger the number of clusters, the 
more detailed information is preserved in the HR models, and the 
larger the computation recourse it needs. This implies that a trade- 
off between cost and performance needs to be achieved. Fig. 11 
demonstrates the number of clusters against RMSE error (left verti- 
cal axis) and computation time (right vertical axis) in the Ridgecrest 
test. The RMSE error experiences a significant decrease while the 
cluster number grows from 3 to 6, with limited decrease for larger 
cluster numbers, and there is a rapid growth in run time when the 
cluster number exceeds 6. For these reasons, we empirically choose 
the cluster number to be 6 as a trade-off between model performance 
and computation complexity. 

6.3 Comparison with conventional methods 

To demonstrate the advantage of the proposed PIPGM, we compare 
its performance with some commonly used conventional methods 
on both the synthetic checkerboard model and the real-data Ridge- 
crest model with interstation S -wave traveltime deviations before 
and after the merge. First, we briefly introduce several popular con- 
ventional fusion methods. 

6.3.1 Gaussian smoothing filter (GF) 

A GF is a data processing technique that reduces noise and smooths 
out signals or data distributions. This method involves applying 
a Gaussian kernel function to the data, a bell-shaped curve that 
weights the data points based on their distance from a central point. 
A smoothing parameter defines the Gaussian kernel called the kernel 
window size or standard deviation, which controls the amount of 
smoothing applied to the data. A larger window size leads to a wider, 
smoother curve, while a lower bandwidth results in a narrower, 
more detailed curve. GFs are commonly used in image and signal 
processing, and data analysis applications. It is a powerful technique 
that can ef fecti vel y remove noise and improve the clarity of data, but 
can also introduce bias and distortions in the data if the smoothing 
parameter is not chosen carefully. 

6.3.2 DL smoothing 

DL smoothing (Yang et al. 2012 ) is a data processing technique used 
to de-noise and smooth misaligned patterns in the signals or images. 
It involves representing the data as a sparse linear combination of a 
set of basis vectors or atoms, which is learned from the data itself 
through an iterative process. In this process, the algorithm attempts 
to identify an array of basis vectors capable of representing the data 
with minimal error. Once the dictionary is learned, it can be used to 
transform the data into a sparse representation, where most of the 
coefficients are zero. This sparse framework is subsequently used in 
the denoising and smoothing of the data, achieved through the se- 
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Figure 8. (a) Direct superposition of the HR 1 Hz Rayleigh w ave tomo graphic velocity and CVM LR models for the Ridgecrest area. (b–d) Combined LR and 
HR models, smoothed by (b) 3rd-order, (c) 2nd-order and (d) 1st-order MRFs. Generally, the higher the order is, the larger the range of neighbouring pixels 
will be taken into consideration, and this leads to a model with smoother local patterns. 
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r extraneous features. DL smoothing has been applied to a wide
ange of data processing applications, including image processing,
udio processing and signal processing. It is a powerful technique
hat ef fecti vel y removes noise and preserves the underlying struc-
ure of the data, but it requires a large amount of training data and
an be computationally e xpensiv e. 

.4 Results 

e show the fusion of HR and LR components for directly super-
mposed checkerboard and Ridgecrest velocity models in Figs 9 (a1)
nd (b1), which both have an HR region in the centre, surrounded
y LR velocities in the surrounding areas. The checkerboard model
as 40 × 40 pixels in the 100 km × 100 km LR area and 40 ×
0 pixels in the 40 km × 40 km HR area. The fused model has
00 × 100 pixels in the 100 km × 100 km LR area. Similarly,
he Ridgecrest model has 50 × 50 pixels in a 100 km × 100 km
R area and 192 × 224 pixels in a 58 km × 64 km HR area. The

used model has 330 × 350 pixels in a 100 km ×100 km area.
igs 9 (a2) and (b2) shows the checkerboard and Ridgecrest stations
long with the ray path density. For the checkerboard model, the
tations are e venl y distributed, whereas the stations for the Ridge-
rest model are highly irregular, reflecting the pattern used in Zhou
t al. ( 2022 ). Figs 9 (a3) and (b3) shows the label mask maps from
he last iteration of the PIPGMs. Pixels with the same label indicate
hat these areas potentially share similar velocity patterns and are
ampled from the same distribution. The smoothed fusion results
ith the 5 × 5 GF, DL (Yang et al. 2012 ) and PIPGM are shown

n Fig. 9 (a4–a6) and (b4–b6). The results show that the learning
ethods (DL and PIPGM) preser ve more detailed infor mation than
irect Gaussian smoothing. This is because the learning methods
dapti vel y find the fusion parameters that optimize the accuracy of
he representation, while Gaussian smoothing only combines the
eighbouring pixels with a predefined kernel. 

We use multiple metrics to e v aluate the model fusion efficacy:
raveltime root-mean-squared-error (RMSE, which measures infor-
ation lost after model fusion Bianco et al. ( 2019 )), Naturalness

mage Quality Evaluator (NIQE, a common-used measurement for
mage quality Mittal et al. ( 2012 )), Peak Signal-to-Noise Ratio
PSNR, measuring the sharpness of images Poobathy & Chezian
 2014 )) and the Frechet inception distance (FID, capturing simi-
arities between the original and fusion models Chong & Forsyth
 2020 )) in Table 1 . In the checkerboard test, because the pattern
s simple and the stations are e venl y distributed, all the learning
ethods achieve similar performance. For the realistic Ridgecrest
odel, ho wever , the PGMs outperform the DL model, as the latter

s sensitive to the orientation of the patches while the graphical
odels are rotationally invariant. We observe further improvements

fter the ray density information is informed in the PIPGM. 

 D I S C U S S I O N  

he proposed graphical model modifies each data point within
 grid-based framework. Unlike traditional methodologies, which
ypically adjust individual data points in isolation, this model incor-
orates the influence of adjacent data points into its recalibration
rocess. Specifically, the algorithm processes each pixel, modifying
ts values to ensure a more cohesive integration with its immediate
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Figure 9. (top, ‘a’ panels) Checkerboard and (bottom, ‘b’ panels) Ridgecrest models. (1) Superimposed HR and LR models. (2) Station location and ray 
density. (3) 6-class label mask maps for HR models (pixels with the same label are learned together). (4) Smoothing results with a 5 × 5 Gaussian filter (GF). 
(5) and (6) Fusion results with DL and with PIPGM, respecti vel y. 
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surroundings. This procedure is akin to a diffusion process, reminis- 
cent of the dispersion patterns observed when ink is introduced into 
a body of clear water. The algorithm iterates over each pixel, fine- 
tuning its chromatic attributes to promote a more uniform alignment 
with proximal pixels. Such a strategy enhances the overall smooth- 
ness of the output and mitigates visual discrepancies, thereby elevat- 
ing the uniformity and coherence across the model’s entirety. The 
method assimilates vital elements of the rotation-invariant property 
and provides a flexible framework for varying data quantities for 
training. Consequentl y, this methodolo gy promotes more inclusi ve, 
adaptable and precise modelling of Earth’s subsurface structures. 
Geological formations are often anisotropic, meaning their prop- 
er ties var y depending on the direction in which they are measured. 
For example, formations are often laterally continuous and verti- 
cally stratified. Standard MRF schemes, which assume homoge- 
neous properties (same properties in all directions), can lead to 
errors when applied to such formations. PIPGM, on the other hand, 
considers the anisotropic nature of geological formations, leading to 
more accurate results. PIPGM provides an edge-preserving method 
based on the information from the neighbouring pixels, which is 
ef fecti ve for reconstructing subsurface models. As a data-driven 
technique, PIPGM holds the capacity for adaptation across various 
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Figure 10. Fusion using cluster numbers n = 3, 5, 6, 7 and 9. (top row) fused velocity model and (bottom row) cluster distribution. Generally, the larger the 
number of clusters, the more detailed information is preserved in the HR models and the larger the computation recourse it needs. A trade-off is required to 
balance the cost and the performance. 

Figure 11. The number of clusters versus RMSE error (left vertical axis, 
corresponding to the blue solid line) and run time (right vertical axis, cor- 
responding to the orange dashed line) on the Ridgecrest model. Generally, 
the larger the cluster number is, the smaller the RMSE error and the longer 
the running time is. We choose cluster number 6 to balance the model 
performance and the computation complexity. 

Table 1. Evaluation results for Gaussian Filtering (GF), DL, classical PGM 

and PIPGM for both checkerboard and the Ridgecrest model. Evaluation 
metrics are traveltime root-mean-square error (RMSE), naturalness image 
quality e v aluator (NIQE), peak signal-to-noise ratio (PSNR) and Fr échet 
inception distance (FID). ↓ indicates smaller is better, and ↑ opposite. 

RMSE/s ↓ NIQE ↓ PSNR/dB ↑ FID ↓ 

Checkerboard GF 1.65 7 .68 14.58 45.75 
” DL 1.18 5 .44 15.70 33.85 
” PGM 1.14 5 .40 16.14 32.49 
” PIPGM 1.06 5 .41 16.14 32.46 

Ridgecrest GF 3.52 12 .41 21.80 61.39 
” DL 2.61 7 .29 22.36 54.25 
” PGM 2.27 6 .70 23.04 47.49 
” PIPGM 2.17 6 .59 23.16 47.18 
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eismological simulation methods. Integrating PIPGM into simula-
ions such as the Finite-Difference Method (Olsen et al. 1995 ) or the
pectral-Element Method (Tromp et al. 2008 ) might generate more
ccurate ground motion simulations by ensuring smoother transi-
ions between HR and LR areas, highlighting its potential for refined
eismic analysis and modelling in complex geological settings. 

 C O N C LU S I O N S  

e developed an approach to fuse multiresolution seismic velocity
aps with PGMs. PIPGM achieves a velocity model by smooth-

ng the generally undesired sharp boundaries between LR and HR
omponents and preserving the detailed information from the HR
odels. 
We tested the efficacy of the proposed fusion method using a

heckerboard model and a realistic, complex fault zone model
round the 2019 M 7.1 Ridgecrest earthquakes. The tests for the
heckerboard model, which is simple with e venl y distributed sta-
ions, show that PIPGM outperforms all the baseline methods. All
he learning-based techniques used to combine the maps (includ-
ng the proposed PGM and PIPGM methods) significantly out-
erform the conventional methods, since the parameters are adap-
i vel y learned from the pairwise data. For Ridgecrest, the PIPGM
ethodology demonstrates a 38 per cent reduction of traveltime

esiduals compared to Gaussian kernel smoothing. This result is
ikely due to the poor performance of traditional techniques in han-
ling the nonuniform-distributed data e venl y, while PIPGM adap-
i vel y chooses the weights according to the intricate structure of the
idgecrest model. 
The proposed PIPGM outperforms traditional techniques in in-

egrating maps of varying resolution, particularly when the map
omplexity escalates and the distribution of data points is uneven.
rospective future work involves addressing the challenge of irregu-

ar resolution within the HR domain, which is crucial for enhancing
he fidelity and applicability of our models and potentially improves
he understanding and application of various real-world models. Fi-
ally, we recommend testing PIPGM directly by comparison of
ynthetic and observed waveforms. 
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DATA  A N D  R E S O U RC E S  

The used seismic and station data are accessed from the FDSN 

3J:RAMP deployment of 3C nodal for the July Searles Valley 
2019 Earthquake https://doi.org/10.7914/SN/3J 2019 . The low- 
resolution velocity model can be accessed from SCEC CVM version 
S4.26-M01 https://doi.org/10.1002/2014JB011346 . The code sup- 
porting this study is available on Zenodo https://doi.org/10.5281/ 
zenodo.11411903 and GitHub ( https://github.com/zhz039/GLvelo 
citymodel ). 
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