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ABSTRACT 
We have developed a highly scalable and efficient GPU-based 
finite-difference code (AWP) for earthquake simulation through 
high throughput, memory locality, communication reduction and 
communication / computation overlap, achieving perfect linear 
speedup on Cray XK7 Titan at ORNL and NCSA’s Blue 
Waters system. AWP’s excellent performance is demonstrated by 
simulating realistic 0-10 Hz earthquake ground motions, as 
required by building engineering design, through small-scale 
complexity in the fault surface and surrounding crustal structure. 
Moreover, we show that AWP provides a speedup in key strain 
tensor calculations critical to probabilistic seismic hazard analysis 
by a factor of 110. This achievement, coupled with improved co-
scheduling capabilities of our workflow-managed systems, makes 
a statewide hazard model a goal reachable with existing 
supercomputers.  The performance of the GPU-based AWP is 
expected to take physics-based seismic hazard analysis to a new 
level using Petascale heterogeneous computing resources, saving 
millions of core-hours over the next few years. 
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1. INTRODUCTION 
Economic exposure to earthquake devastation is skyrocketing, 
primarily because urban environments are growing rapidly in 
seismically active regions. Probabilistic seismic hazard analysis 
(PSHA) in its standard form—i.e. derived empirically assuming 
the hazard is time-independent (Poissonian)—has been effective 
in helping decision-makers reduce seismic risk and increase 
community resilience. However, the earthquake threat is highly 
time-dependent and involves terribly violent, but known, physics. 
To understand risk and improve resilience, we need to quantify 
earthquake hazards in physics-based models that can be coupled 
to engineering models of the built environment [1]. For example, 
the performance of critical distributed systems (water, medical, 
energy, etc.) depends on how complex earthquake wavefields 

interact nonlinearly with the mechanical heterogeneities of an 
entire cityscape, below as well as above the ground. Earthquake 
system science seeks to represent these complexities and 
interactions in system-level models. 

The enabling technology of earthquake system science and 
physics-based PSHA is the numerical simulation of fault rupture 
dynamics and seismic wave propagation in realistic 3D models of 
the crust’s heterogeneous structure. Research to achieve high 
performance has ranged worldwide [2] [3] [4], but some of the 
most advanced computational efforts have been organized under 
the Southern California Earthquake Center (SCEC). In 2001, 
SCEC established its “Community Modeling Environment” as a 
collaboratory for earthquake simulation. In 2005, we 
demonstrated the jump to terascale with the TeraShake 
simulations at the San Diego Supercomputer Center [5] [6]. We 
discovered how the rupture directivity of the southern San 
Andreas fault, a source effect, could couple to the excitation of 
sedimentary basins, a site effect, to substantially increase the 
seismic hazard in Los Angeles [5]. We also used dynamic rupture 
simulations to investigate how increases in source complexity can 
act the other way, reducing the directivity effect [6]. 
In 2008, the USGS adopted a SCEC simulation of a magnitude-
7.8 San Andreas earthquake [7] as the basis for the first Great 
Southern California ShakeOut, the largest earthquake 
preparedness exercise of its time. This simulation was verified by 
comparisons of simulations from three different codes (Graves, 
Hercules, AWP-ODC) running at three national supercomputer 
centers [8]. The ShakeOut simulation provided system engineers, 
emergency responders, and disaster planners with a realistic, high-
resolution scenario, prompting many detailed studies of a Katrina-
scale catastrophe that have led to reductions in risk and improved 
resilience [9]. ShakeOut exercises are now performed in most of 
the United States and a growing number of other countries [10]. 
Improvements in earthquake simulation have closely tracked the 
development of leadership-class computational facilities. A major 
goal of the SCEC program—to simulate the largest expected 
(“wall-to-wall”) earthquake on the San Andreas fault up to 
seismic frequencies exceeding 1 Hz—was achieved in 2010 on 
Jaguar, the first petascale machine at ORNL’s Oak Ridge 
Leadership Computing Facility (OLCF). This Magnitude-8 (M8) 
scenario involved running the AWP-ODC finite-difference code 
on a uniform mesh comprising 436-billion elements for 24 hours 
at a sustained speed of 220 Tflops [11]. The computational size of 
the M8 simulation (mesh points × time steps) was almost 1017, 
more than three orders of magnitude greater than the TeraShake 
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simulations. M8 highlighted the importance of two aspects of 
earthquake physics in hazard analysis: the propagation of dynamic 
fault ruptures at speeds exceeding the shear-wave speed, “super-
shear rupturing”, which substantially modifies the seismic 
wavefield, and the existence of stresses high enough in the near-
source and near-surface regions to require a nonlinear treatment of 
the deformations.  

The arrival of petascale computing has opened the door to full-
scale, physics-based PSHA. For example, earthquake simulations 
have recently been validated against ground motions recorded up 
to 4 Hz, with promising results [12], and we are pushing these 
comparisons to even higher frequencies. However, in order to 
calculate seismic hazards in California and other tectonically 
active regions, simulating just a few earthquakes won’t do; we 
must adequately sample earthquake distributions from 
probabilistic models, such as the Uniform California Earthquake 
Rupture Forecast (UCERF) [13]. Using standard “forward” 
simulation methods, computing three-component seismograms 
from M sources at N sites requires M simulations. For the 
UCERF2 model in Southern California, M > 105; i.e., hundreds of 
thousands to millions of possible earthquake sources must be 
modeled, which cannot be done directly, even at petascale. 
To overcome this scale limitation, SCEC has built a special 
simulation platform, CyberShake, which uses the time-reversal 
physics of seismic reciprocity to turn the problem around [14]. A 
complete tensor-valued wavefield (the strain Green tensor or 
SGT) is calculated for a system of point forces at surface sites; 
seismic reciprocity then allows us to compute seismograms at 
those sites by fast (embarrassingly parallel) quadratures of the 
SGT over the fault surfaces. This “reciprocal” simulation method 
can generate 3-component seismograms for M sources at N sites 
with only 3N simulations. For the Los Angeles region, the near-
surface geologic structure can be interpolated to produce high-
resolution seismic hazard maps with N as small as 200-250, 
reducing the computations by a factor of 2,000. Scientific 
workflow software is used to manage the hundreds of millions of 
jobs needed to populate a CyberShake model [15]. 
Using the CyberShake platform, we have created the first physics-
based PSHA models of the Los Angeles region from suites of 
simulations comprising ~108 seismograms. These models are 
“layered”, allowing earthquake engineers and other users to 
access ensembles of hazard curves (representing epistemic 
uncertainties), to disaggregate the calculations and identify the 
ruptures that dominate the hazard at a particular site, and to 
retrieve the actual seismograms, which can then be used to drive 
full-physics engineering models (Figure 1). 

CyberShake brings the computational challenges of physics-based 
PSHA into sharp focus. The current models are limited to low 
seismic frequencies (≤ 0.5 Hz). Goals are to increase this limit to 
above 1 Hz and produce a California-wide CyberShake model 
using the new UCERF3 rupture forecast, which is scheduled to be 
released this year. The computational size of the statewide model 
will be more than 100 times larger than the current Los Angeles 
models. Our progress towards exascale is also being driven by the 
application of full-3D waveform tomography to the development 
of the seismic velocity models [16] [17], which are required as 
input to CyberShake. Full-3D tomography using 3-component 
seismograms from M sources observed at N stations requires at 
least 3N + M wavefield simulations per iteration [18]. 
This paper demonstrates that the computational power needed to 
accelerate CyberShake, and other applications of earthquake 
simulations will likely come from accelerator-based, many-core 

architectures. We present initial results on the performance of a 
finite-difference code, Anelastic Wave Propagation by Olsen, 
Day, and Cui (AWP-ODC) [11], that has been GPU-accelerated 
on the new OLCF system, Titan. Perfectly linear speedup has 
been achieved on up to 8192 Cray XK7 nodes.  
 

 
Figure 1: The CyberShake hazard model, showing the 
layering of information. (1) Hazard map for the LA region 
(hot colors are high hazard). (2) Hazard curves for a site near 
the San Onofre Nuclear Generating Station. (3) Disaggre-
gation of hazard in terms of magnitude and distance. (4) 
Rupture with the highest hazard at the site (a nearby offshore 
fault). (5) Seismograms simulated for this rupture. Arrows 
show how users can query the model starting at high levels 
(e.g. hazard map) to access information of progressively lower 
levels (e.g. seismograms). 
Section 2 of this paper states the computational problem in a 
general context, and Section 3 outlines our solution for AWP-
ODC, which is based on an effective memory reduction scheme. 
Section 4 introduces single-GPU and multi-GPU implementation 
of the MPI-CUDA-based code. Section 5 demonstrates the 
parallel efficiency and summarizes the sustained performance 
achieved on petascale supercomputers. Section 6 applies these 
new capabilities to obtain two scientific results: (1) the first 10-Hz 
simulation on the Titan system and (2) the first CyberShake 
hazard curve generated using AWP-ODC-GPU on the NCSA Blue 
Waters system. 

2. STATEMENT OF THE PROBLEM  
To advance and apply our earthquake system science research 
within the practical limits of currently available open science HPC 
resources, significant computational performance improvements 
must be developed. Using GPUs, scientific applications in 
molecular dynamics, signal processing, magnetic materials, 
electromagnetics, and a host of other research areas have achieved 
orders-of-magnitude speedup [19] [20] [21] [22] [23] [24]. These 
applications are typically compute-bound, in contrast to a wide 
range of memory-bound scientific and engineering applications, 
such as earthquake and weather forecasting. The performance of 
memory-bounded codes is dominated by the memory system and 
arithmetic throughput.  In GPU computing, the memory-bounded 
stencil calculations for large-scale production runs are limited in 
compute performance primarily due to their low computational 
intensity and poor data locality, which require significant amounts 
of costly data movement between CPUs and GPUs through the 
slow PCI Express (PCIe) bus because of MPI communication. 



One successful stencil application on GPUs is the Phase-Field 
model, with which Shimokawabe et al. [25] achieved 1 Pflops 
(single precision) on the TSUBAME 2.0 Supercomputer in 2011. 
This application is less memory-bound, because its 2nd-order 
stencil equations require only single-layer ghost cells and two 
compute variables.  
In contrast, popular finite difference (FD) seismic wave 
propagation codes use 4th-order, 13-point stencils with two ghost-
cell layers [4] [5] [7] [26] [27] [28]. These stencils increase 
memory usage significantly because they require global memory 
sweeps through data structures that are much larger than the data 
caches available on GPUs. Memory-bound stencil calculations are 
known to achieve only a low fraction of peak performance [29], 
which explains why only a few FD seismic wave propagation 
codes have been ported to GPUs [29] [30] [31] [32] [33] [34]. FD 
GPU codes can be fine-tuned with CUDA asynchronous memory 
copy operations to overlap CPU/PCIe data transfer with GPU 
computation [30]. However, the performance is still burdened by 
CPU-GPU data communication. One of the few seismic 
applications tuned to a petascale heterogeneous system is the 
spectral-element package SPECFEM3D [35] [36]. The compute 
kernel of this application runs on GPUs while other computations 
remain on CPUs; hence, full advantage cannot be taken of the 
GPU accelerators. To our knowledge, no seismic application has 
thus far demonstrated sustained petascale performance for a 
science run. 
This paper presents the capabilities and initial performance of 
AWP-ODC-GPU, a restructured CUDA-MPI code that solves 3D 
velocity-stress wave equations with an explicit, staggered-grid FD 
scheme. A hardware-oriented design has been developed to 
achieve high performance. The main problem is to make full use 
of GPU power by overlapping slow data communication with an 
extended computing region. The algorithms used are highly 
scalable because they carefully rearrange the order of computing 
and communication to hide latency, resulting in exceptional 
speedup and parallel efficiency. We implement a communication 
model that reduces the intra-node frequency of data movement 
between CPU and GPU and enables complete overlap of 
communication and computation. This model can be extended to 
general stencil computing on a structured grid. We have validated 
the simulation outputs in comparison to both reference models 
and earthquake observations. 

3. NUMERICAL METHODS 
AWP-ODC-GPU (hereafter abbreviated AWP) is based on the FD 
code originally developed by Kim Bak Olsen at University of 
Utah [37]. The AWP code solves the 3D velocity-stress wave 
equations with the explicit staggered-grid FD scheme. This 
scheme is fourth-order accurate in space and second-order 
accurate in time. This application has two computing modes: 
dynamic rupture and wave propagation mode. In this paper, we 
will focus on the wave propagation mode. 

3.1 Wave Propagation Equations  
The seismic forward problem calculates the propagation of 
seismic waves through spatially heterogeneous soil materials. 
AWP solves a coupled system of partial differential equations. 
The governing elastodynamic equations can be written as 

 𝜕!𝑣 =   
!
!
∇ ∙ 𝜎    (1a) 

 𝜕!𝜎 =   𝜆 ∇ ∙ 𝑣 𝐼 + 𝜇(∇𝑣 + ∇𝑣!)  (1b) 

where λ and µ are the Lamé coefficients and ρ is the density, ν 
and σ are particle velocity vector and symmetric stress tensor 
respectively. Decomposing (1a) component-wise leads to three 
scalar-valued equations for the velocity vector components and 
six scalar-valued equations for the stress tensor components. 
 

 
 

Figure 2: Staggering of the wavefield parameters, where 
Vi are particle velocities, τij are stress tensor components, Mij 
are memory variables, ρ, λ, µ are elastic parameters, qp and qs 
are quality factors for P and S waves, respectively. 

3.2 Staggered-Grid Finite Difference 
Equations 
The nine governing scalar equations are approximated by finite 
differences on a staggered grid in both time and space (see 
Figure 2). Time derivatives are approximated by 

 𝜕!𝑣(𝑡) ≈
! !!∆!

!
!! !!∆!

!

∆!
   (2a) 

 𝜕!𝜎 𝑡 + ∆!
!

≈ ! !!!! !! !
∆!

   (2b) 

For the spatial derivatives, let Φ denote a generic velocity or 
stress component, and h be the equidistant mesh size. The FD 
approximation to the partial derivative with respect to x at grid 
point (i,j,k) is 

𝜕!Φ!,!,! ≈ 𝐷!! Φ !,!,! =
!! !

!!!!,!,!
!!

!!!!,!,!
!!! !

!!!!,!,!
!!

!!!!,!,!

!
 (3) 

with c1 = 9/8 and c2 = –1/24. This equation is used to approximate 
each spatial derivative for each velocity and stress component. 

Truncation of the 3D modeling domain on a computational mesh 
inevitably generates undesirable reflections. Absorbing boundary 
conditions (ABCs) are designed and optimized to reduce these 
reflections to the level of numerical noise. AWP implements 
ABCs based on simple ‘sponge layers’ [38]. The ABCs apply a 
damping term to the full wavefield inside the sponge layer and are 
unconditionally stable. 

3.3 Anelastic attenuation in AWP-ODC  
Seismic waves are subjected to anelastic losses in the Earth, and 
such attenuation must be included in realistic simulations of wave 
propagation. Anelastic attenuation can be quantified by quality 
factors for S waves (Qs) and P waves (Qp). Early implementations 
of attenuation models include Maxwell solids (e.g., [39]) and 
standard linear solid models (e.g., [40]). Here, we implemented an 
efficient coarse-grained methodology in AWP [41] [42], which 
significantly improves the accuracy of the stress relaxation 
schemes. This method closely approximates frequency-
independent Q by incorporating a large number of relaxation 
times (eight in our calculations) into the relaxation function 
without sacrificing computational performance or memory. The 
quality factor Q (separate for S and P waves) is in this formulation 
expressed as 

 𝑄!!(𝜔) ≈ !"
!!

!!!!!
!!!!

!!!
!
!!!    (4) 

where δM is the relaxation of the modulus, Mu is the unrelaxed 
modulus, λi are weights used in the associated quadrature 

time = t Vx  ρ
Vy  ρ
Vz  ρ

time = t + 1/2 !xx   !yy   !zz

Mxx   Myy   Mzz

qp     qs    µ   "

time = t + 1/2 !xy   Mxy   µ   qs

!xz   Mxz   µ   qs

!yz   Myz   µ   qs



calculations, τi are the relaxation times, and ω is angular 
frequency. Each stress component has associated with it N 
memory variables ςi(t) (one variable co-located with each stress 
component in the staggered grid, see Figure 2). 

 𝜎 𝑡 = 𝑀! 𝜀 𝑡 − 𝜍!(𝑡)!
!!!   (5) 

where σ(t) is stress and ε(t) is strain. We use N=8 to obtain 
sufficient accuracy in the implementation. 

3.4 Strain Green Tensor Calculations 
Alternatively, the strain Green tensor (SGT) can be simulated and 
utilized in reciprocal methods to produce waveforms.  The strain 
Green tensor can be calculated as 

𝑯 𝒓, 𝑡; 𝒓! = !
!
[𝜕!!𝐺!" 𝒓, 𝑡; 𝒓! + 𝜕!!𝐺!"(𝒓, 𝑡; 𝒓!)]       (6) 

where Gin is the ith component of the displacement response to the 
nth component of a point force at rS, and the spatial gradient 
operator acts on the field coordinate r [43]. The SGT can be 
computed from the stress-field by applying the stress-strain 
constitutive relation. The displacement field is linearly related to 
the seismic moment tensor M: 

  𝑢! 𝒓, 𝑡; 𝒓! = 𝑯 𝒓, 𝑡; 𝒓! :𝑴         (7) 
Therefore, the elements of the SGT can be used in earthquake 
source parameter inversions to obtain the partial derivatives of the 
seismograms with respect to the moment tensor elements. By 
directly using the strain Green tensor, we can improve the 
computational efficiency in waveform modeling while eliminating 
the possible errors from numerical differentiation [43]. Seismic 
reciprocity can then applied to compute synthetic seismograms 
from SGTs, from which peak spectral acceleration values are 
computed and combined into hazard curves [43] [44]. 

4. AWP IMPLEMENTATION DETAILS 
In this section we present implementation details of our GPU 
application AWP. We introduce a C/CUDA/MPI implementation 
whose initial development was part of co-author Zhou’s graduate 
research [45] [46]. We will emphasize the key points that led to 
the extraordinary scaling performance we obtained for the GPU 
application. 

4.1 Computation Kernel 
In AWP, two computation kernels for velocity and stress are 
carried out in sequence for wave propagation simulations based 
on the numerical approximation of the partial differential 
equations [1-3]. At each time step in the main loop, for each mesh 
point in the domain, first the velocity computation kernel updates 
three velocity components (in X, Y, and Z directions) by using the 
six stress components (on XX, YY, ZZ, XY, XZ, and YZ faces), and 
then the stress computation kernel employs these updated velocity 
components to update the six stress components. We have twenty-
one 3D arrays to be maintained in the memory to process the 
wave propagation, including velocity, stress and coefficients. The 
size of each 3D array is the same as the 3D simulation domain. 
Figure 3 shows three examples for the memory access pattern for 
velocity vx, stress xx and stress xy computation kernels. 
Approximately 136 reads, 15 writes and 307 FLOPs calculations 
are involved for each point of the 3D domain in one iteration. The 
Flops to bytes ratio is around 0.5, with low computational 
intensity. Improving the data locality has been the key to achieve 
high performance. 

 
Figure 3: (a) 13-point asymmetric stencil computation for 
velocity vx: a velocity center point computation requires 13 
points stress input including 4 from the same center location 
and 9 others from neighborhood. Computation for velocity vy 
and vz has similar format with different neighborhood input. 
(b) 13-point asymmetric stencil computation for stress (xx, yy, 
zz) with very similar stencil format as velocity vx. (c) 9-point 
asymmetric stencil computation for stress xy: the input 
velocity only involves x and y directions. Computation for 
stress yz and xz has similar format with different directions.  

4.2 AWP-ODC Fortran/MPI Code 
The CPU-based AWP-ODC software is highly scalable, 
composed of solvers (dynamic rupture and wave propagation), 
pre-processing tools (PetaSrcP, PetaMeshP) and other post-
processing workflow tools [11]. The code achieves excellent 
strong scaling up to 223K cores on XT5. Scalable IO in the code 
uses MPI-IO to handle petabytes of simulation data [11]. Newly 
added features include checkpointing using ADIOS, and 
outputting in HDF5 format which enable time and storage space 
optimizations.  

4.3 Single-GPU AWP Implementation 
The AWP code was re-structured from scratch to enable GPU 
computation. The initial programming effort was to convert the 
Fortran/MPI code to a serial CPU program in C. Then we added 
CUDA calls and kernels to the application for GPU computation 
[45]. Each GPU is controlled by an associated CPU. The design is 
implemented with maximum throughput for heterogeneous 
computing environments in mind. 
Various optimization approaches are implemented to improve the 
data locality: 1) memory is coalesced for continuous CUDA 
thread data access, 2) register usage is optimized to reduce global 
memory access, 3) L1 cache or shared memory usage is optimized 
for data reuse and register savings, and 4) read-only memory is 
employed to store constant coefficient variables because of read-
only cache benefits [45].  

4.4 Multi-GPU AWP Implementation 
The novel MPI-GPU implementation includes algorithm-level 
communication reduction, effective overlap of communication 
and computation and scalable IO. 

4.4.1 Communication and Computation 
Unlike the CPU code with 3D decomposition, our multi-GPU 
code uses a two layer decomposition where each is 2D (see Figure 
4). The 3D domain (NX, NY, NZ) is partitioned into (PX, PY, 1) 
sub-domains. Each GPU is responsible for the computation of its 
own sub-domain with dimension of (nx, ny, NZ). The sub-domain 
is further partitioned along Y and Z axes inside the GPU for 
different streaming multiprocessors (SM). 
One of the benefits of using a 2D decomposition is that, for the 
3D arrays in the GPU memory, two consecutive locations 
correspond to data related for two neighboring mesh points in the 
Z direction, i.e. GPU memory is managed as fast-Z. In this 
fashion, memory locality is increased and the memory access 
latency is reduced. Another benefit of this decomposition is that 



there are no neighboring sub-domains along the Z direction, and 
hence the number of neighbors is reduced from 6 to 4 for inner 
sub-domains. With this approach, the total amount of MPI 
communication is reduced by approximately 33%. 

 
Figure 4: Two-layer 3D domain decomposition: X&Y 
decomposition for GPUs and Y&Z decomposition for GPU 
SMs. 
We take an innovative approach to reduce the amount of 
communication and latency. The primary concept is to extend the 
ghost cell region by adding two additional layers, and hence 
manage a ghost cell region with thickness of 4 mesh points in 
total, in both X and Y directions. We exchange 4 layers of velocity 
data of ghost cells, resulting in up-to-date velocity data for (nx+8, 
ny+8, NZ). After this, each GPU computes stress for a domain of 
size (nx+4, ny+4, NZ) including 2 layers of ghost cells. The 
computed stress is then used to compute velocity for the sub-
domain of size (nx, ny, NZ). That means at each iteration we 
exchange twice as much velocity data but no stress data. Note that 
we now exchange 33% less data with halved communication 
frequency, as velocity has three variables and stress has six. This 
is a significant saving in communication with single exchange per 
iteration, compared to two exchanges per iteration in the CPU 
code. Moreover, we gain more time to overlap communication 
with computation without synchronizing stress for ghost cell data. 
The slight increase in memory and computation requirements is 
upper bounded by NZ × (4 × (nx + ny) + 16), which can easily be 
obtained by setting sub-domain size as (nx+4,ny+4,NZ) rather than 
(nx,ny,NZ). For our benchmark block size of 160 × 160 × 2048, 
this upper bound corresponds to a 5% increase in the memory 
requirement. 

 
Figure 5: Communication reduction - extend ghost cell region 
with extra 2-layers and utilize computation instead of 
communication to update the ghost cell region before stress 
computation. The 2D XY plane represents 3D sub-domain, no 
communication is required in Z direction due to 2D 
decomposition for GPUs. 

The communication approach introduced in Figure 5 requires two 
extra layers of ghost cells, for we need data for all four corners. 
We introduced an in-order communication method - first 
west/east, then north/south. As a result we are able to exchange 
diagonal cell information without adding additional MPI 
messages [46]. 
We employ an ordered scheduling to manage asynchronous 
communication and computation efficiently as illustrated in 
Figure 6. We first compute the velocity of the boundary region, 
which corresponds to ghost cells of a neighboring sub-volume 
(V1-V4). While this data is asynchronously copied to CPU and 
being sent to neighbors through MPI, GPU computes the velocity 
(V5) and stress (S5) for the inner region. When the data exchange 
is done and velocity data for the ghost cells is received, it is 
copied back to GPU asynchronously. After the velocity data for 
the ghost cells is copied, GPU computes stress for the boundary 
region (S1-S4) [46]. 

 

 
Figure 6: Overlap of computation and communication 
overlapping. Top: concept scheme. Bottom: nvvp profiler 
output matches well with the design, achieving complete 
overlap. 

4.4.2 I/O 
The AWP code is capable of handling large number of dynamic 
sources and petabytes of heterogeneous mesh inputs. The dynamic 
sources consist of the positions of earthquake source stations, and 
stress data associated with each source station. In our 10-Hz 
simulation case (Section 6), the mesh input is 4.9 TB, and the 
source is as large as 1.9 TB. These dynamic sources are computed 
based on the accurate and verified staggered grid, split-node 
scheme [47]. Multi-million sources are highly clustered in a 
concentrated grid area, resulting in hundreds of gigabytes of 
source data assigned to a single core. Copying this data to GPUs 
through PCIe is an additional challenge at runtime. 
We support the sources and mesh in 3 different modes: serial 
reading of a single file, concurrent reading of pre-partitioned files, 
and concurrent reading through MPI-IO. Source partitioning 
involves both spatial and temporal locality required to fit in the 
GPU memory. Parameters are introduced to control how often the 
partitioned source is copied from CPUs to GPUs. This feature 
allows CPUs to read in large chunks of source data to avoid 
frequent access to file system, while GPU only copies over the 
amount it can afford. Our implementation has demonstrated 
excellent scalability in handling the initial dataset. 

AWP uses MPI-IO to write the simulation outputs to a single file 
concurrently. This works particularly well as more memory is 
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available on CPUs to allow effective aggregation of outputs in 
CPU memory buffers before being flushed. We support run-time 
parameters to select a subset of the data by skipping mesh points 
as needed.  

4.4.3 AWP API Implementation 
We also implemented a generic API that employs the pthreads to 
take advantage of the idle CPU cores which can work on other 
independent tasks in parallel. For each computing node with 
multiple CPU cores, only 1 core/thread is requested to run the 
regular GPU solver since each node has only 1 GPU on XT7. 
Hence the other cores/threads are available during the running 
period, and a pthread-based API has been introduced to run some 
other workloads simultaneously. 
Our first pthread task is the output. We separated the output 
related operations from the computation code and implemented 
them in the output thread. After the main thread finishes the 
initialization, the output thread starts and passively waits until the 
main thread signals that it is time to save velocity data. Then the 
output thread wakes up, launches a kernel on GPU to save 
velocity data into a buffer on the GPU device, and copies that 
buffer back to the CPU host. After data copy is done, the output 
thread gives signal back to the main thread to compute the next 
timestep. At the same time, the output thread prepares the 
aggregated data to write into the disk while waiting for signal for 
the new generated velocity data. Therefore, the output task 
reduces some non-computation activities in the main thread and 
makes full use of the computing resource. Other potential tasks 
will be related to post-processing tools, visualization, analysis 
tools to gather statistics from the run, or interactive control tools. 

4.5 Implementation of SGT Calculations  
The SGT generation step is by far the most time-consuming 
processing step in the CyberShake workflow, accounting for 
approximately 90% of the CPU-hours.  Therefore, we have 
adapted AWP for CyberShake, using the GPU solver to accelerate 
the process of calculating SGTs (hereafter abbreviated AWP-
SGT).  We implemented two effective IO communication 
schemes for calculating SGTs. The first uses serial IO with the 
velocity mesh partitioned in advance. The second utilizes run-time 
partitioning inside the solver, using MPI-IO. The code supports 
2D decomposition on CPUs, where each processor is responsible 
for performing stress and velocity calculations within its own 
subgrid of the simulation volume, while allowing GPUs to handle 
SGT calculations. This code has been extensively verified by 
comparing stress and strain outputs of earthquake sources to those 
from a reference model. Such verification is crucial during 
optimization and code updates. 

4.5.1 Co-scheduling 
When the SGT calculations are performed on GPUs, the CPUs on 
the same nodes are mostly idle except for handling IO and 
communications, which could be a potential waste of the 
resources. We present a runtime environment for co-scheduling 
across CPUs and GPUs. We motivate this work because the 
CyberShake workflow consists of two parts: a parallel AWP-SGT 
calculation, and high-throughput reciprocity calculations with 
each rupture variation to produce seismograms and intensity 
measures of interest. This is described in more detail in section 
6.2. Co-scheduling enables us to perform both calculations 
simultaneously on XK7 nodes, reducing our time-to-solution and 
making efficient use of all available computational resources.  

To enable co-scheduling, we launch multiple MPI jobs on XK7 
nodes via multiple calls to aprun, the ALPS utility to launch jobs 
on compute nodes from a mom node. We use core specialization 
when launching the child aprun calls to keep a core available for 
GPU data transfer and communication calls, as both the GPU and 
CPU codes use MPI.  Testing has shown that this approach results 
in little to no impact on the GPU performance. To prevent 
overloading the mom node with too many simultaneous aprun 
calls, we limit the number of child aprun calls to 5-10. 

Since calculating a pair of SGTs requires approximately 60 GPU 
hours, and the CyberShake post-processing requires about 1000 
CPU hours, the post-processing is able to complete on the 15 
available CPUs per XK7 node while SGTs are calculated on the 
GPUs.  We have successfully tested co-scheduling with the first 
half of CyberShake post-processing, calculating SGTs on 50 
GPUs while performing post-processing with 10 child jobs of 5 
nodes each.  We anticipate full CyberShake co-scheduling 
capabilities in the near future. 

4.5.2 Hazard Curve Calculation 
PSHA results are typically delivered by hazard curves, which 
relate ground motion on the X-axis to probability of exceeding 
that level of ground motion on the Y-axis, for a site of interest.  To 
verify AWP-SGT, we calculated a CyberShake hazard curve 
using the GPU version of AWP-SGT, and compared it to a hazard 
curve using the CPU version; the two are numerically almost 
identical.  Calculation of a hazard curve involves SGT timeseries 
data from over half a million locations in the volume, providing 
rigorous verification. 

 

Figure 7: PSHA hazard curve calculated for the University of 
Southern California (USC) site. The horizontal axis represents 
ground motion at 3 seconds spectral acceleration, in terms of g 
(acceleration due to gravity).  The vertical axis gives the 
probability of exceeding that level of ground motion.  The blue 
line is the curve calculated using CyberShake with AWP-
SGT.  The dashed lines are hazard curves calculated using 
four common attenuation relationships which provide 
validation of the CyberShake methodology. 

4.6 Verification 
We performed a variety of tests to ensure that AWP produces 
results comparable in accuracy to those for widely used and 
validated SCEC community codes running on HPC systems. We 
started with a wave propagation simulation of the magnitude-5.4 
Chino Hills earthquake at frequencies up to 2.5 Hz using 128 



Keeneland GPUs, with extended sources active for 2.5 seconds 
[46]. The results are verified with those from our CPU code, 
showing almost identical simulation results. 

Comparing the velocities with negligible error is necessary, but 
not sufficient for the execution of accurate simulation of ground 
motions. Even small errors can accumulate over time if they are 
correlated or biased. We then examined further the correction of 
the seismograms using the SGT calculations. We demonstrated 
that the results from the GPU code and reference model are nearly 
identical, in a 1.2 billion mesh point volume for 20K timesteps.  

5. PERFORMANCE ANALYSIS 
We present the strong and weak scaling results obtained on OLCF 
Titan, NCSA Blue Waters and Georgia Tech Keeneland.  

AWP has undergone extensive fine-tuning on NVIDIA Fermi 
GPUs, but the team has had only limited time to analyze 
performance and optimize for NVIDIA Kepler GPUs, like those 
in Titan and Blue Waters. We have observed that for small sub-
domain sizes, accessing input arrays through the GPU’s texture 
cache sped up the two primary compute kernels by a combined 
1.9X. This speed-up is due to a reduction in global memory 
transactions. At larger sub-domain sizes, like those used for the 
scaling results below, the local data becomes too large for the 
texture cache, which negates the benefit of this change. We did 
see more modest gains by loading some, but not all, input arrays 
through the texture cache. In the future we intend to explore the 
use of per-SM shared memory to more selectively stage data 
arrays to achieve the same reduction in global memory 
transactions. This may have the additional benefit of reducing the 
register usage per thread and increasing occupancy. 

5.1 Benchmark Machine Specifications 
The OLCF Titan is a Cray XK7 supercomputer located at the Oak 
Ridge Leadership Computing Facility (OLCF), with a theoretical 
peak double-precision, floating point performance of more than 
20 petaflops. Titan consists of 18,688 physical compute nodes, 
where each compute node is comprised of one 16-core 2.2GHz 
AMD Opteron™ 6274 (Interlagos) CPU, one NVIDIA Kepler 
(K20X) GPU, and 32 GB of RAM. Two nodes share a Gemini™ 
high-speed interconnect router, which are connected in a 3D torus 
[48]. The Blue Waters system is a Cray XE6/XK7 hybrid machine 
composed of AMD 6276 "Interlagos" processors (nominal clock 
speed of at least 2.3 GHz), NVIDIA K20X accelerators, and Cray 
Gemini interconnect [49]. The Keeneland Full Scale (KFS) 
system consists of a 264-node cluster based on HP SL250 servers. 
Each node has 32 GB of host memory, two Intel Sandy Bridge 
CPU’s, three NVIDIA M2090 (Fermi) GPUs, and a Mellanox 
FDR InfiniBand interconnect.  The total peak double precision 
performance is around 615 TFlops [50]. 

5.2 Strong Scaling and Weak Scaling 
The strong scaling benchmarks were performed on NCSA Blue 
Waters and OLCF Titan. The small fixed size benchmark was run 
on Blue Waters whereas others were on Titan (Figure 8). The 
degradation in performance with the increase of the number of 
GPUs is expected, as the application becomes bounded by 
communication overhead that arises from less compute work. As 
the number of GPUs is increased, so does the outer halo region to 
total sub-volume size ratio in proportion, making our application 
less effective in overlapping communication and computation. 

With regard to weak scaling, the perfect linear speedup was 
observed on 90 Keeneland Initial Delivery System (KIDS) nodes 
equipped with 3 NVIDIA M2090 GPUs per node, where 10% of 

the peak performance was achieved. Figure 9 and Table 1 show 
the AWP code’s extraordinary scaling performance with 100% 
parallel efficiency for weak scaling from 16 up to 8192 Titan 
nodes. In this benchmark, each GPU carries out stencil 
calculations for a sub-domain with size 160 × 160 × 2048. The 
total number of points in the domain becomes 160 × 160 × 2048 × 
N, where N represents the number of GPUs used. To the best of 
our knowledge, this is a record speedup from a highly memory-
bounded scientific application achieved on Cray XK7. Perfect 
linear weak scaling indicates that our careful design of 
communication model is able to hide communication latency by 
computation efficiently. 

Notable slowdown was observed in the case of 16,384 nodes, 
although we still achieve 93.5% parallel efficiency. Since the 
application performs only nearest-neighbor communications, we 
would expect continued linear scaling. The source of this 
performance degradation is not yet fully understood, but we 
believe that the topology of the network may have played a 
significant role. We intend to explore the effect of node topology 
and evaluate the benefit of topology-aware node placement in the 
future. 

 
Figure 8: Speedup of strong scaling on Cray XT7 at ORNL, 
with 2D square configuration (Z direction fixed as 2048) for 
problem size of 320, 640, 1280 and 5120.  

 
Figure 9: Weak scaling and sustained performance using 
AWP-ODC-GPU in single precision. XK7 exceeds XE6 
performance by a factor of 4.2. Solid (dashed) black line is 
(ideal) speedup on Titan, Rounds/triangle/cross points are 
FLOPS performance on Titan/Blue Waters/Keeneland. Solid 
round points are FLOPS on Blue Waters XE6. A perfect 
linear speedup is observed between 16 and 8,192 nodes. A 
sustained 2.3 Pflop/s performance was recorded on 16,384 
Titan nodes. 
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5.3 Sustained Performance 
We calculate the performance by measuring the average time 
spent on one time step after running a benchmark test for 2,000 
time steps. The number of floating point operations is counted in 
the code based on 307 FLOP per mesh point per time step. 
Initialization and output writing parts are excluded from this 
calculation. The IO time is negligible when time iterations of tens 
to hundreds of thousands of time steps are involved. We obtained 
a sustained performance estimate of 2.33 PetaFlops on 16,384 
Titan GPUs. This was a 2,000 time-step benchmark run of a 
problem size of 20,480 × 20,480 × 2,048 or 859 billion mesh 
points. 

Our main scientific findings using the code were obtained from a 
rough-fault simulation with a domain size 416 km × 208 km × 41 
km with a spatial resolution of 20 meters at a maximum frequency 
resolution of 10-Hz, discretized into 443 billion mesh points. The 
size of this run is slightly larger than the record M8 San Andreas 
fault simulation [11]. The run took only 5 hours and 30 minutes to 
complete 170 seconds of simulation time whereas M8 ran on 
approximately 220K CPU cores for 24 hours. We emphasize that 
the 10-Hz rough-fault simulation included 6.8 TB input and 170 
GB output. To our best knowledge, this is the first sustained 
petaflop seismic production simulation to date, and a new record 
for earthquake simulation in terms of scale. These results are 
particularly remarkable considering that memory-bounded stencil 
computations typically achieve a low fraction of theoretical peak 
performance.  
Table 1: Time-to-solutions and Parallel efficiency 

XK7 Nodes 
used 

Elements 
(Thousands) 

Wall Clock 
Time 

Parallel 
Efficiency 

16 (4 × 4) 838,860 0.1085 100% 
32 (4 × 8) 1,677,721 0.1084 100% 
64 (8 × 8) 3,355,443 0.1085 100% 

128 (8 × 16) 6,710,886 0.1085 100% 
256 (16 × 16) 13,421,772 0.1085 100% 
512 (16 × 32) 26,843,545 0.1085 100% 

1024 (32 × 32) 53,687,091 0.1085 100% 
2048 (32 × 64) 107,374,182 0.1084 100% 
4096 (64 × 64) 214,748,364 0.1085 100% 

8192 (64 × 128) 429,496,729 0.1085 100% 
16384 (128 × 128) 858,993,459 0.1159 93.2% 
 
Both the benchmark and rough fault runs produced remarkable 
scaling results for the GPU-enable AWP code. We also compared 
the performance against CPU systems. The benchmark results 
indicate that using GPU accelerators on Cray XK7 improves the 
performance by a factor of 5.2 compared to CPU-only usage of 
XK7 nodes. Furthermore the performance of XK7 exceeds Cray 
XE6 by a factor of 2.5 when 512 nodes are in use. We expect our 
code’s performance on XK7 nodes to improve further compared 
to XE6 as the number of nodes increases. The reason is that the 
CPU code suffers more from the increasing communication costs 
because of the lack of effective overlap. 

5.4 Time-to-solution and Performance-to-cost 
Analysis for CyberShake Calculations 
One of the primary motivations of implementing AWP is to 
accelerate CyberShake calculations. We are planning to use 
CyberShake to calculate a California state-wide seismic hazard 
map with a maximum frequency of 1 Hz. When using the heavily 
optimized CPU code AWP-ODC, it is expected to require 662 

million allocation hours to complete. Our AWP-SGT GPU code 
running on XK7 demonstrates a performance improvement of a 
factor of 3.7 compared to the CPU code running on XE6. Table 2 
provides some detailed comparisons of calculating SGTs on XK7 
versus XE6, and demonstrates the saving of 579 millions of 
allocation hours when using the accelerated (CPU+GPU) AWP. 

Table 2: CyberShake Strain Green Tensor Calculations 
CyberShake CPU1only GPU2 only CPU+GPU2 

XE61/XK72 nodes 400 400 400 
WCT3 per site 10.36 hr 2.80 hr 2.80 hr 

Total SUs charged4 662 M 168 M 168 M 
Saved in Million SU5  495 M 579 M 

1) XE6 node (dual Interlagos); 2) XK7 (Operaton+Kepler K20X); 3) Wall clock time 
based on measurements on Cray XE6/XK7 at NCSA for two Strain Green Tensor 
calculations per site; 4)  Based on total 5000 sites required for the generation of 
California state-wide seismic hazard map at a maximum frequency resolution of 1-
Hz; 5)  CPU+GPU saving counts the use of XK7 CPUs for post-processing of 
seismogram extraction as co-scheduling, involving 6.2 million rupture variations 
calculations per site. 

6. SCIENTIFIC RESULTS 
We have applied these new AWP-ODC-GPU capabilities to 
obtain the first 10-Hz deterministic simulation on the Titan system 
and the first CyberShake hazard curve on the NCSA Blue Waters 
system. 

6.1 Ground Motion Up To 10-Hz 
High-frequency (>1 Hz) deterministic ground motion predictions 
are critical input to performance-based building design. The 
accuracy of the simulations is limited by the small-scale 
complexity of the source and by high-frequency wave scattering 
in the crust. To investigate this problem, we have simulated high-
frequency ground motions on a mesh comprising 443-billion 
(20,800 × 10,400 × 2,048) elements in a calculation that includes 
both small-scale fault geometry and media complexity. 
Specifically, we have computed the ground motion synthetics 
using dynamic rupture propagation along a rough fault imbedded 
in a velocity structure with heterogeneities described by a 
statistical model. We first carried out simulations of dynamic 
ruptures using a support operator method [51], in which the 
assumed fault roughness followed a self-similar fractal 
distribution with wavelength scales spanning three orders of 
magnitude, from ~102 m to ~105 m. We then used AWP to 
propagate the ground motions out to large distances from the fault 
in a characteristic 1D rock model with and without small-scale 
heterogeneities. The latter employed the moment-rate time 
histories from the dynamic rupture simulations as kinematic 
sources. Figure 10 shows snapshots of the rupture surface wave 
propagation for crustal models with and without the media 
heterogeneities. The fractal roughness is controlled by a Hurst 
number, which we set at 0.2, and the size of the heterogeneity by a 
standard deviation, which we set at 5%, as constrained by near-
surface and borehole velocity data. Note how the wavefield in the 
bottom snapshot is scattered the small-scale heterogeneities, 
which generates realistic high-frequency synthetics. A few 
seismograms are shown to compare models with and without the 
small-scale structure. 

The simulation results show realistic features. The acceleration 
spectra from the simulation are nearly flat up to almost 10 Hz, in 
agreement with theoretical predictions. Moreover, the simulated 
response spectra compare favorably with spectra obtained from 
the empirical ground motion prediction equations (GMPEs) 
currently used by building engineers, which are calibrated to high-
frequency recordings of earthquake ground motions.  



 

 
Figure 10: Snapshots of 10-Hz rupture propagation (slip rate) and surface wavefield (strike-parallel component) for a crustal 
model (top) without and (bottom) with a statistical model of small-scale heterogeneities. The displayed geometrical complexities on 
the fault were included in the rupture simulation. The associated synthetic strike-parallel component seismograms are 
superimposed as black traces on the surface at selected sites. The part of the crustal model located in front of the fault has been 
lowered for a better view. Note the strongly scattered wavefield in the bottom snapshot due to the small-scale heterogeneities. 

6.2 Cybershake Hazard Model 
PSHA estimates the probability that earthquake ground motions at 
a location of interest will exceed some intensity measure, such as 
peak ground velocity or peak ground acceleration, over a given 
time period. Results are delivered in the form of hazard curves for 
a site of interest and hazard maps for a region (see Figure 1). 
These kinds of estimates are highly useful for civic planners, 
building engineers, and insurance agencies, and, through building 
codes, they influence billions of dollars of construction yearly. 
As described in the introduction, physics-based PSHA requires 
very large ensembles of deterministic forward simulations. SCEC 
has developed the CyberShake methodology to incorporate 3D 
ground motion simulations into seismic hazard calculations [14]. 
To calculate a waveform-based seismic hazard estimate for a site 
of interest, we begin with UCERF2 [13] and generate multiple 
rupture realizations with differing hypocenter locations and slip 
distributions (sampled from an appropriate stochastic rupture 

model). A geo-referenced mesh of approximately 1.2 billion 
points is then constructed and populated with seismic velocity 
information from a SCEC Community Velocity Model. A body-
force impulse is placed at the site of interest and the resulting 20K 
timestep simulation illuminates the volume, calculating SGTs. 
Seismic reciprocity is used to post-process the SGTs and obtain 
synthetic seismograms and peak intensity measures for each 
rupture variation [43]. These are combined with the UCERF2 
rupture probabilities to produce probabilistic seismic hazard 
curves for the site using the OpenSHA hazard analysis code [52]. 
Figure 11 illustrates the CyberShake workflow. 

A major computational challenge how to increase the overall 
computational efficiency of the CyberShake workflow, which 
must combine the execution of the massively parallel SGT 
calculations with many embarrassingly parallel post-processing 
jobs. We have successfully utilized workflow tools to manage the 
data and job dependencies [15]. Looking ahead, we plan to 
increase the frequency of the model from 0.5 Hz to 1.0 Hz, which 
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will require simulation volumes with eight times the mesh points 
and simulations with twice the timesteps. In addition, the new 
UCERF3 earthquake rupture forecast, which will be released this 
year, will include more numerous and more complex ruptures, 
increasing the number of seismograms per site by a factor of 
about 15. These computational requirements drive the need for 
scalable, heterogeneous approaches to workflow execution.  

 
Figure 11: CyberShake workflow. Circles indicate 
computational modules and rectangles indicate files and 
databases. 
Through an innovative co-scheduling approach, we have shown 
how CyberShake can make efficient use of GPUs and CPUs in 
heterogeneous systems. By running AWP-SGT on GPUs and 
doing high-throughput computations on the CPUs, we are able to 
run CyberShake workflows at a scale which now brings a 1-Hz 
California-wide CyberShake hazard model within reach. 

7. CONCLUSIONS AND FUTURE WORK 
We have re-designed the AWP-ODC code to accelerate wave 
propagation simulations on GPU-powered heterogeneous systems 
An aggressive architecture-oriented optimization has maximized 
throughput and memory locality, providing much better 
performance than our highly optimized CPU-based code. 
Algorithm-level communication reduction, effective overlap of 
communication and computation, and scalable IO have produced 
a GPU-based AWP code that achieves perfect speedup and a 
sustained petaflops capability.  

AWP provides scientists, for the first time, with the ability to 
simulate ground motions from large fault ruptures to frequencies 
as high as 10 Hz in a physically realistic way. We have 
demonstrated this capability with simulations that incorporate 
both the fractal roughness of faults, which is thought to enhance 
the generation of high-frequency seismic waves, and the fractal 
heterogeneity of the crust, through which the waves are strongly 
scattered. The resulting ground motions compare favorably with 
leading GMPEs and provide guidance to further refine high-
frequency simulations.  

These results will change how synthetic seismograms are 
produced for use in earthquake engineering. Currently, the only 
way to compute synthetic seismograms across the full bandwidth 
of engineering interest (0.1-10 Hz) is to combine low-frequency 
deterministic simulations with high-frequency stochastic 
simulations [53] [54] [55]. The latter are obtained from ad hoc 
models that match the observed spectral content of the 

observations but do not satisfy the anelastic wave equations. The 
lack of a physics-based model makes it difficult to transport what 
is learned about the high-frequency behavior of one earthquake 
into forecasting the effects of future earthquakes. Our research 
shows how better physics can be incorporated into solutions of 
this problem. 
We have also transformed the GPU-powered AWP to calculate 
SGTs. Our results show that it can serve as the main 
computational engine for CyberShake. The use of the AWP-SGT 
code is expected to save up to 500 million hours of computation 
required for the proposed statewide CyberShake 3.0 model, in 
addition to reducing dramatically the time-to-solution. 

In the near future, we will refine our co-scheduling strategy for 
the CyberShake calculations to allow full utilization of both CPUs 
and GPUs on heterogeneous computational systems such as Blue 
Waters and Titan.  Factor-of-three reductions in time-to-solution 
are anticipated, which will enable on-demand hazard curve 
calculations. We also plan to facilitate co-scheduling of in-situ 
volume data analysis. We will continue optimization of the GPU 
code on Kepler, develop resilience features, and implement 
ADIOS for solver check-pointing. Finally, we are in the process 
of adding more physics to AWP-SGT simulations, incorporating 
more realistic media, different realizations of fault roughness, 
plasticity, and other features, which will greatly advance our 
objectives to improve the accuracy of seismic hazard analysis.  

The GPU-based AWP-SGT code will provide highly scalable 
solutions for other problems of interest to SCEC as well as the 
wider scientific community, including full-3D waveform 
inversions to obtain better velocity models for use in structural 
studies of the Earth across a range of geographic scales.  
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