
Physics-based Seismic Hazard Analysis on Petascale
Heterogeneous Supercomputers

ABSTRACT
We have developed a highly scalable and efficient GPU-based
finite-difference code (AWP) for earthquake simulation through
high throughput, memory locality, communication reduction and
communication / computation overlap, achieving perfect linear
speedup on Cray XK7 Titan at ORNL and NCSA’s Blue
Waters system. AWP’s excellent performance is demonstrated by
simulating realistic 0-10 Hz earthquake ground motions, as
required by building engineering design, through small-scale
complexity in the fault surface and surrounding crustal structure.
Moreover, we show that AWP provides a speedup in key strain
tensor calculations critical to probabilistic seismic hazard analysis
by a factor of 110. This achievement, coupled with improved co-
scheduling capabilities of our workflow-managed systems, makes
a statewide hazard model a goal reachable with existing
supercomputers. The performance of the GPU-based AWP is
expected to take physics-based seismic hazard analysis to a new
level using Petascale heterogeneous computing resources, saving
millions of core-hours over the next few years.

Keywords
SCEC, seismic hazard analysis, earthquake ground motions,
parallel scalability, GPU, CyberShake, hybrid heterogeneous.

1. INTRODUCTION
Economic exposure to earthquake devastation is skyrocketing,
primarily because urban environments are growing rapidly in
seismically active regions. Probabilistic seismic hazard analysis
(PSHA) in its standard form—i.e. derived empirically assuming
the hazard is time-independent (Poissonian)—has been effective
in helping decision-makers reduce seismic risk and increase
community resilience. However, the earthquake threat is highly
time-dependent and involves terribly violent, but known, physics.
To understand risk and improve resilience, we need to quantify
earthquake hazards in physics-based models that can be coupled
to engineering models of the built environment [1]. For example,
the performance of critical distributed systems (water, medical,
energy, etc.) depends on how complex earthquake wavefields

interact nonlinearly with the mechanical heterogeneities of an
entire cityscape, below as well as above the ground. Earthquake
system science seeks to represent these complexities and
interactions in system-level models.

The enabling technology of earthquake system science and
physics-based PSHA is the numerical simulation of fault rupture
dynamics and seismic wave propagation in realistic 3D models of
the crust’s heterogeneous structure. Research to achieve high
performance has ranged worldwide [2] [3] [4], but some of the
most advanced computational efforts have been organized under
the Southern California Earthquake Center (SCEC). In 2001,
SCEC established its “Community Modeling Environment” as a
collaboratory for earthquake simulation. In 2005, we
demonstrated the jump to terascale with the TeraShake
simulations at the San Diego Supercomputer Center [5] [6]. We
discovered how the rupture directivity of the southern San
Andreas fault, a source effect, could couple to the excitation of
sedimentary basins, a site effect, to substantially increase the
seismic hazard in Los Angeles [5]. We also used dynamic rupture
simulations to investigate how increases in source complexity can
act the other way, reducing the directivity effect [6].
In 2008, the USGS adopted a SCEC simulation of a magnitude-
7.8 San Andreas earthquake [7] as the basis for the first Great
Southern California ShakeOut, the largest earthquake
preparedness exercise of its time. This simulation was verified by
comparisons of simulations from three different codes (Graves,
Hercules, AWP-ODC) running at three national supercomputer
centers [8]. The ShakeOut simulation provided system engineers,
emergency responders, and disaster planners with a realistic, high-
resolution scenario, prompting many detailed studies of a Katrina-
scale catastrophe that have led to reductions in risk and improved
resilience [9]. ShakeOut exercises are now performed in most of
the United States and a growing number of other countries [10].
Improvements in earthquake simulation have closely tracked the
development of leadership-class computational facilities. A major
goal of the SCEC program—to simulate the largest expected
(“wall-to-wall”) earthquake on the San Andreas fault up to
seismic frequencies exceeding 1 Hz—was achieved in 2010 on
Jaguar, the first petascale machine at ORNL’s Oak Ridge
Leadership Computing Facility (OLCF). This Magnitude-8 (M8)
scenario involved running the AWP-ODC finite-difference code
on a uniform mesh comprising 436-billion elements for 24 hours
at a sustained speed of 220 Tflops [11]. The computational size of
the M8 simulation (mesh points × time steps) was almost 1017,
more than three orders of magnitude greater than the TeraShake

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’13, Nov, 2013, Denver, Colorado, USA

Y. Cui1, E. Poyraz1, K.B. Olsen2, J. Zhou1, K. Withers2, S. Callaghan3, J. Larkin4,
C. Guest1, D. Choi1, A. Chourasia1, Z. Shi2, S. M. Day2, J. P. Maechling3, T. H. Jordan3

1
University of California, San Diego,

2
San Diego State University,

3
University of Southern California,

4
NVIDIA Inc.

1(yfcui,epoyraz,j4zhou,cguest,djchoi,amit@ucsd.edu),
2(kbolsen,withers,zshi,sday@mail.sdsu.edu),

3(scottcal,maechlin,tjordan@usc.edu) , 4(jlarkin@nvidia.com)

simulations. M8 highlighted the importance of two aspects of
earthquake physics in hazard analysis: the propagation of dynamic
fault ruptures at speeds exceeding the shear-wave speed, “super-
shear rupturing”, which substantially modifies the seismic
wavefield, and the existence of stresses high enough in the near-
source and near-surface regions to require a nonlinear treatment of
the deformations.

The arrival of petascale computing has opened the door to full-
scale, physics-based PSHA. For example, earthquake simulations
have recently been validated against ground motions recorded up
to 4 Hz, with promising results [12], and we are pushing these
comparisons to even higher frequencies. However, in order to
calculate seismic hazards in California and other tectonically
active regions, simulating just a few earthquakes won’t do; we
must adequately sample earthquake distributions from
probabilistic models, such as the Uniform California Earthquake
Rupture Forecast (UCERF) [13]. Using standard “forward”
simulation methods, computing three-component seismograms
from M sources at N sites requires M simulations. For the
UCERF2 model in Southern California, M > 105; i.e., hundreds of
thousands to millions of possible earthquake sources must be
modeled, which cannot be done directly, even at petascale.
To overcome this scale limitation, SCEC has built a special
simulation platform, CyberShake, which uses the time-reversal
physics of seismic reciprocity to turn the problem around [14]. A
complete tensor-valued wavefield (the strain Green tensor or
SGT) is calculated for a system of point forces at surface sites;
seismic reciprocity then allows us to compute seismograms at
those sites by fast (embarrassingly parallel) quadratures of the
SGT over the fault surfaces. This “reciprocal” simulation method
can generate 3-component seismograms for M sources at N sites
with only 3N simulations. For the Los Angeles region, the near-
surface geologic structure can be interpolated to produce high-
resolution seismic hazard maps with N as small as 200-250,
reducing the computations by a factor of 2,000. Scientific
workflow software is used to manage the hundreds of millions of
jobs needed to populate a CyberShake model [15].
Using the CyberShake platform, we have created the first physics-
based PSHA models of the Los Angeles region from suites of
simulations comprising ~108 seismograms. These models are
“layered”, allowing earthquake engineers and other users to
access ensembles of hazard curves (representing epistemic
uncertainties), to disaggregate the calculations and identify the
ruptures that dominate the hazard at a particular site, and to
retrieve the actual seismograms, which can then be used to drive
full-physics engineering models (Figure 1).

CyberShake brings the computational challenges of physics-based
PSHA into sharp focus. The current models are limited to low
seismic frequencies (≤ 0.5 Hz). Goals are to increase this limit to
above 1 Hz and produce a California-wide CyberShake model
using the new UCERF3 rupture forecast, which is scheduled to be
released this year. The computational size of the statewide model
will be more than 100 times larger than the current Los Angeles
models. Our progress towards exascale is also being driven by the
application of full-3D waveform tomography to the development
of the seismic velocity models [16] [17], which are required as
input to CyberShake. Full-3D tomography using 3-component
seismograms from M sources observed at N stations requires at
least 3N + M wavefield simulations per iteration [18].
This paper demonstrates that the computational power needed to
accelerate CyberShake, and other applications of earthquake
simulations will likely come from accelerator-based, many-core

architectures. We present initial results on the performance of a
finite-difference code, Anelastic Wave Propagation by Olsen,
Day, and Cui (AWP-ODC) [11], that has been GPU-accelerated
on the new OLCF system, Titan. Perfectly linear speedup has
been achieved on up to 8192 Cray XK7 nodes.

Figure 1: The CyberShake hazard model, showing the
layering of information. (1) Hazard map for the LA region
(hot colors are high hazard). (2) Hazard curves for a site near
the San Onofre Nuclear Generating Station. (3) Disaggre-
gation of hazard in terms of magnitude and distance. (4)
Rupture with the highest hazard at the site (a nearby offshore
fault). (5) Seismograms simulated for this rupture. Arrows
show how users can query the model starting at high levels
(e.g. hazard map) to access information of progressively lower
levels (e.g. seismograms).
Section 2 of this paper states the computational problem in a
general context, and Section 3 outlines our solution for AWP-
ODC, which is based on an effective memory reduction scheme.
Section 4 introduces single-GPU and multi-GPU implementation
of the MPI-CUDA-based code. Section 5 demonstrates the
parallel efficiency and summarizes the sustained performance
achieved on petascale supercomputers. Section 6 applies these
new capabilities to obtain two scientific results: (1) the first 10-Hz
simulation on the Titan system and (2) the first CyberShake
hazard curve generated using AWP-ODC-GPU on the NCSA Blue
Waters system.

2. STATEMENT OF THE PROBLEM
To advance and apply our earthquake system science research
within the practical limits of currently available open science HPC
resources, significant computational performance improvements
must be developed. Using GPUs, scientific applications in
molecular dynamics, signal processing, magnetic materials,
electromagnetics, and a host of other research areas have achieved
orders-of-magnitude speedup [19] [20] [21] [22] [23] [24]. These
applications are typically compute-bound, in contrast to a wide
range of memory-bound scientific and engineering applications,
such as earthquake and weather forecasting. The performance of
memory-bounded codes is dominated by the memory system and
arithmetic throughput. In GPU computing, the memory-bounded
stencil calculations for large-scale production runs are limited in
compute performance primarily due to their low computational
intensity and poor data locality, which require significant amounts
of costly data movement between CPUs and GPUs through the
slow PCI Express (PCIe) bus because of MPI communication.

One successful stencil application on GPUs is the Phase-Field
model, with which Shimokawabe et al. [25] achieved 1 Pflops
(single precision) on the TSUBAME 2.0 Supercomputer in 2011.
This application is less memory-bound, because its 2nd-order
stencil equations require only single-layer ghost cells and two
compute variables.
In contrast, popular finite difference (FD) seismic wave
propagation codes use 4th-order, 13-point stencils with two ghost-
cell layers [4] [5] [7] [26] [27] [28]. These stencils increase
memory usage significantly because they require global memory
sweeps through data structures that are much larger than the data
caches available on GPUs. Memory-bound stencil calculations are
known to achieve only a low fraction of peak performance [29],
which explains why only a few FD seismic wave propagation
codes have been ported to GPUs [29] [30] [31] [32] [33] [34]. FD
GPU codes can be fine-tuned with CUDA asynchronous memory
copy operations to overlap CPU/PCIe data transfer with GPU
computation [30]. However, the performance is still burdened by
CPU-GPU data communication. One of the few seismic
applications tuned to a petascale heterogeneous system is the
spectral-element package SPECFEM3D [35] [36]. The compute
kernel of this application runs on GPUs while other computations
remain on CPUs; hence, full advantage cannot be taken of the
GPU accelerators. To our knowledge, no seismic application has
thus far demonstrated sustained petascale performance for a
science run.
This paper presents the capabilities and initial performance of
AWP-ODC-GPU, a restructured CUDA-MPI code that solves 3D
velocity-stress wave equations with an explicit, staggered-grid FD
scheme. A hardware-oriented design has been developed to
achieve high performance. The main problem is to make full use
of GPU power by overlapping slow data communication with an
extended computing region. The algorithms used are highly
scalable because they carefully rearrange the order of computing
and communication to hide latency, resulting in exceptional
speedup and parallel efficiency. We implement a communication
model that reduces the intra-node frequency of data movement
between CPU and GPU and enables complete overlap of
communication and computation. This model can be extended to
general stencil computing on a structured grid. We have validated
the simulation outputs in comparison to both reference models
and earthquake observations.

3. NUMERICAL METHODS
AWP-ODC-GPU (hereafter abbreviated AWP) is based on the FD
code originally developed by Kim Bak Olsen at University of
Utah [37]. The AWP code solves the 3D velocity-stress wave
equations with the explicit staggered-grid FD scheme. This
scheme is fourth-order accurate in space and second-order
accurate in time. This application has two computing modes:
dynamic rupture and wave propagation mode. In this paper, we
will focus on the wave propagation mode.

3.1 Wave Propagation Equations
The seismic forward problem calculates the propagation of
seismic waves through spatially heterogeneous soil materials.
AWP solves a coupled system of partial differential equations.
The governing elastodynamic equations can be written as

 𝜕!𝑣 =
!
!
∇ ∙ 𝜎 (1a)

 𝜕!𝜎 = 𝜆 ∇ ∙ 𝑣 𝐼 + 𝜇(∇𝑣 + ∇𝑣!) (1b)

where λ and µ are the Lamé coefficients and ρ is the density, ν
and σ are particle velocity vector and symmetric stress tensor
respectively. Decomposing (1a) component-wise leads to three
scalar-valued equations for the velocity vector components and
six scalar-valued equations for the stress tensor components.

Figure 2: Staggering of the wavefield parameters, where
Vi are particle velocities, τij are stress tensor components, Mij
are memory variables, ρ, λ, µ are elastic parameters, qp and qs
are quality factors for P and S waves, respectively.

3.2 Staggered-Grid Finite Difference
Equations
The nine governing scalar equations are approximated by finite
differences on a staggered grid in both time and space (see
Figure 2). Time derivatives are approximated by

 𝜕!𝑣(𝑡) ≈
! !!∆!

!
!! !!∆!

!

∆!
 (2a)

 𝜕!𝜎 𝑡 + ∆!
!

≈ ! !!!! !! !
∆!

 (2b)

For the spatial derivatives, let Φ denote a generic velocity or
stress component, and h be the equidistant mesh size. The FD
approximation to the partial derivative with respect to x at grid
point (i,j,k) is

𝜕!Φ!,!,! ≈ 𝐷!! Φ !,!,! =
!! !

!!!!,!,!
!!

!!!!,!,!
!!! !

!!!!,!,!
!!

!!!!,!,!

!
 (3)

with c1 = 9/8 and c2 = –1/24. This equation is used to approximate
each spatial derivative for each velocity and stress component.

Truncation of the 3D modeling domain on a computational mesh
inevitably generates undesirable reflections. Absorbing boundary
conditions (ABCs) are designed and optimized to reduce these
reflections to the level of numerical noise. AWP implements
ABCs based on simple ‘sponge layers’ [38]. The ABCs apply a
damping term to the full wavefield inside the sponge layer and are
unconditionally stable.

3.3 Anelastic attenuation in AWP-ODC
Seismic waves are subjected to anelastic losses in the Earth, and
such attenuation must be included in realistic simulations of wave
propagation. Anelastic attenuation can be quantified by quality
factors for S waves (Qs) and P waves (Qp). Early implementations
of attenuation models include Maxwell solids (e.g., [39]) and
standard linear solid models (e.g., [40]). Here, we implemented an
efficient coarse-grained methodology in AWP [41] [42], which
significantly improves the accuracy of the stress relaxation
schemes. This method closely approximates frequency-
independent Q by incorporating a large number of relaxation
times (eight in our calculations) into the relaxation function
without sacrificing computational performance or memory. The
quality factor Q (separate for S and P waves) is in this formulation
expressed as

 𝑄!!(𝜔) ≈ !"
!!

!!!!!
!!!!

!!!
!
!!! (4)

where δM is the relaxation of the modulus, Mu is the unrelaxed
modulus, λi are weights used in the associated quadrature

time = t Vx ρ
Vy ρ
Vz ρ

time = t + 1/2 !xx !yy !zz

Mxx Myy Mzz

qp qs µ "

time = t + 1/2 !xy Mxy µ qs

!xz Mxz µ qs

!yz Myz µ qs

calculations, τi are the relaxation times, and ω is angular
frequency. Each stress component has associated with it N
memory variables ςi(t) (one variable co-located with each stress
component in the staggered grid, see Figure 2).

 𝜎 𝑡 = 𝑀! 𝜀 𝑡 − 𝜍!(𝑡)!
!!! (5)

where σ(t) is stress and ε(t) is strain. We use N=8 to obtain
sufficient accuracy in the implementation.

3.4 Strain Green Tensor Calculations
Alternatively, the strain Green tensor (SGT) can be simulated and
utilized in reciprocal methods to produce waveforms. The strain
Green tensor can be calculated as

𝑯 𝒓, 𝑡; 𝒓! = !
!
[𝜕!!𝐺!" 𝒓, 𝑡; 𝒓! + 𝜕!!𝐺!"(𝒓, 𝑡; 𝒓!)] (6)

where Gin is the ith component of the displacement response to the
nth component of a point force at rS, and the spatial gradient
operator acts on the field coordinate r [43]. The SGT can be
computed from the stress-field by applying the stress-strain
constitutive relation. The displacement field is linearly related to
the seismic moment tensor M:

 𝑢! 𝒓, 𝑡; 𝒓! = 𝑯 𝒓, 𝑡; 𝒓! :𝑴 (7)
Therefore, the elements of the SGT can be used in earthquake
source parameter inversions to obtain the partial derivatives of the
seismograms with respect to the moment tensor elements. By
directly using the strain Green tensor, we can improve the
computational efficiency in waveform modeling while eliminating
the possible errors from numerical differentiation [43]. Seismic
reciprocity can then applied to compute synthetic seismograms
from SGTs, from which peak spectral acceleration values are
computed and combined into hazard curves [43] [44].

4. AWP IMPLEMENTATION DETAILS
In this section we present implementation details of our GPU
application AWP. We introduce a C/CUDA/MPI implementation
whose initial development was part of co-author Zhou’s graduate
research [45] [46]. We will emphasize the key points that led to
the extraordinary scaling performance we obtained for the GPU
application.

4.1 Computation Kernel
In AWP, two computation kernels for velocity and stress are
carried out in sequence for wave propagation simulations based
on the numerical approximation of the partial differential
equations [1-3]. At each time step in the main loop, for each mesh
point in the domain, first the velocity computation kernel updates
three velocity components (in X, Y, and Z directions) by using the
six stress components (on XX, YY, ZZ, XY, XZ, and YZ faces), and
then the stress computation kernel employs these updated velocity
components to update the six stress components. We have twenty-
one 3D arrays to be maintained in the memory to process the
wave propagation, including velocity, stress and coefficients. The
size of each 3D array is the same as the 3D simulation domain.
Figure 3 shows three examples for the memory access pattern for
velocity vx, stress xx and stress xy computation kernels.
Approximately 136 reads, 15 writes and 307 FLOPs calculations
are involved for each point of the 3D domain in one iteration. The
Flops to bytes ratio is around 0.5, with low computational
intensity. Improving the data locality has been the key to achieve
high performance.

Figure 3: (a) 13-point asymmetric stencil computation for
velocity vx: a velocity center point computation requires 13
points stress input including 4 from the same center location
and 9 others from neighborhood. Computation for velocity vy
and vz has similar format with different neighborhood input.
(b) 13-point asymmetric stencil computation for stress (xx, yy,
zz) with very similar stencil format as velocity vx. (c) 9-point
asymmetric stencil computation for stress xy: the input
velocity only involves x and y directions. Computation for
stress yz and xz has similar format with different directions.

4.2 AWP-ODC Fortran/MPI Code
The CPU-based AWP-ODC software is highly scalable,
composed of solvers (dynamic rupture and wave propagation),
pre-processing tools (PetaSrcP, PetaMeshP) and other post-
processing workflow tools [11]. The code achieves excellent
strong scaling up to 223K cores on XT5. Scalable IO in the code
uses MPI-IO to handle petabytes of simulation data [11]. Newly
added features include checkpointing using ADIOS, and
outputting in HDF5 format which enable time and storage space
optimizations.

4.3 Single-GPU AWP Implementation
The AWP code was re-structured from scratch to enable GPU
computation. The initial programming effort was to convert the
Fortran/MPI code to a serial CPU program in C. Then we added
CUDA calls and kernels to the application for GPU computation
[45]. Each GPU is controlled by an associated CPU. The design is
implemented with maximum throughput for heterogeneous
computing environments in mind.
Various optimization approaches are implemented to improve the
data locality: 1) memory is coalesced for continuous CUDA
thread data access, 2) register usage is optimized to reduce global
memory access, 3) L1 cache or shared memory usage is optimized
for data reuse and register savings, and 4) read-only memory is
employed to store constant coefficient variables because of read-
only cache benefits [45].

4.4 Multi-GPU AWP Implementation
The novel MPI-GPU implementation includes algorithm-level
communication reduction, effective overlap of communication
and computation and scalable IO.

4.4.1 Communication and Computation
Unlike the CPU code with 3D decomposition, our multi-GPU
code uses a two layer decomposition where each is 2D (see Figure
4). The 3D domain (NX, NY, NZ) is partitioned into (PX, PY, 1)
sub-domains. Each GPU is responsible for the computation of its
own sub-domain with dimension of (nx, ny, NZ). The sub-domain
is further partitioned along Y and Z axes inside the GPU for
different streaming multiprocessors (SM).
One of the benefits of using a 2D decomposition is that, for the
3D arrays in the GPU memory, two consecutive locations
correspond to data related for two neighboring mesh points in the
Z direction, i.e. GPU memory is managed as fast-Z. In this
fashion, memory locality is increased and the memory access
latency is reduced. Another benefit of this decomposition is that

there are no neighboring sub-domains along the Z direction, and
hence the number of neighbors is reduced from 6 to 4 for inner
sub-domains. With this approach, the total amount of MPI
communication is reduced by approximately 33%.

Figure 4: Two-layer 3D domain decomposition: X&Y
decomposition for GPUs and Y&Z decomposition for GPU
SMs.
We take an innovative approach to reduce the amount of
communication and latency. The primary concept is to extend the
ghost cell region by adding two additional layers, and hence
manage a ghost cell region with thickness of 4 mesh points in
total, in both X and Y directions. We exchange 4 layers of velocity
data of ghost cells, resulting in up-to-date velocity data for (nx+8,
ny+8, NZ). After this, each GPU computes stress for a domain of
size (nx+4, ny+4, NZ) including 2 layers of ghost cells. The
computed stress is then used to compute velocity for the sub-
domain of size (nx, ny, NZ). That means at each iteration we
exchange twice as much velocity data but no stress data. Note that
we now exchange 33% less data with halved communication
frequency, as velocity has three variables and stress has six. This
is a significant saving in communication with single exchange per
iteration, compared to two exchanges per iteration in the CPU
code. Moreover, we gain more time to overlap communication
with computation without synchronizing stress for ghost cell data.
The slight increase in memory and computation requirements is
upper bounded by NZ × (4 × (nx + ny) + 16), which can easily be
obtained by setting sub-domain size as (nx+4,ny+4,NZ) rather than
(nx,ny,NZ). For our benchmark block size of 160 × 160 × 2048,
this upper bound corresponds to a 5% increase in the memory
requirement.

Figure 5: Communication reduction - extend ghost cell region
with extra 2-layers and utilize computation instead of
communication to update the ghost cell region before stress
computation. The 2D XY plane represents 3D sub-domain, no
communication is required in Z direction due to 2D
decomposition for GPUs.

The communication approach introduced in Figure 5 requires two
extra layers of ghost cells, for we need data for all four corners.
We introduced an in-order communication method - first
west/east, then north/south. As a result we are able to exchange
diagonal cell information without adding additional MPI
messages [46].
We employ an ordered scheduling to manage asynchronous
communication and computation efficiently as illustrated in
Figure 6. We first compute the velocity of the boundary region,
which corresponds to ghost cells of a neighboring sub-volume
(V1-V4). While this data is asynchronously copied to CPU and
being sent to neighbors through MPI, GPU computes the velocity
(V5) and stress (S5) for the inner region. When the data exchange
is done and velocity data for the ghost cells is received, it is
copied back to GPU asynchronously. After the velocity data for
the ghost cells is copied, GPU computes stress for the boundary
region (S1-S4) [46].

Figure 6: Overlap of computation and communication
overlapping. Top: concept scheme. Bottom: nvvp profiler
output matches well with the design, achieving complete
overlap.

4.4.2 I/O
The AWP code is capable of handling large number of dynamic
sources and petabytes of heterogeneous mesh inputs. The dynamic
sources consist of the positions of earthquake source stations, and
stress data associated with each source station. In our 10-Hz
simulation case (Section 6), the mesh input is 4.9 TB, and the
source is as large as 1.9 TB. These dynamic sources are computed
based on the accurate and verified staggered grid, split-node
scheme [47]. Multi-million sources are highly clustered in a
concentrated grid area, resulting in hundreds of gigabytes of
source data assigned to a single core. Copying this data to GPUs
through PCIe is an additional challenge at runtime.
We support the sources and mesh in 3 different modes: serial
reading of a single file, concurrent reading of pre-partitioned files,
and concurrent reading through MPI-IO. Source partitioning
involves both spatial and temporal locality required to fit in the
GPU memory. Parameters are introduced to control how often the
partitioned source is copied from CPUs to GPUs. This feature
allows CPUs to read in large chunks of source data to avoid
frequent access to file system, while GPU only copies over the
amount it can afford. Our implementation has demonstrated
excellent scalability in handling the initial dataset.

AWP uses MPI-IO to write the simulation outputs to a single file
concurrently. This works particularly well as more memory is

Stress as Input to Compute Velocity

Velocity before computation Velocity after computation Velocity after communication Stress after computation

Velocity
as Input to
Compute

Stress

Inner region
(1: nx, 1: ny, 1: NZ)

Inner region + 2 ghost cells
(-1: nx + 2, -1: ny + 2, 1: NZ)

Inner region + 4 ghost cells
(-3: nx + 4, -3: ny + 4, -3: NZ)

Valid
Data

Invalid
Data

Velocity
Communication

available on CPUs to allow effective aggregation of outputs in
CPU memory buffers before being flushed. We support run-time
parameters to select a subset of the data by skipping mesh points
as needed.

4.4.3 AWP API Implementation
We also implemented a generic API that employs the pthreads to
take advantage of the idle CPU cores which can work on other
independent tasks in parallel. For each computing node with
multiple CPU cores, only 1 core/thread is requested to run the
regular GPU solver since each node has only 1 GPU on XT7.
Hence the other cores/threads are available during the running
period, and a pthread-based API has been introduced to run some
other workloads simultaneously.
Our first pthread task is the output. We separated the output
related operations from the computation code and implemented
them in the output thread. After the main thread finishes the
initialization, the output thread starts and passively waits until the
main thread signals that it is time to save velocity data. Then the
output thread wakes up, launches a kernel on GPU to save
velocity data into a buffer on the GPU device, and copies that
buffer back to the CPU host. After data copy is done, the output
thread gives signal back to the main thread to compute the next
timestep. At the same time, the output thread prepares the
aggregated data to write into the disk while waiting for signal for
the new generated velocity data. Therefore, the output task
reduces some non-computation activities in the main thread and
makes full use of the computing resource. Other potential tasks
will be related to post-processing tools, visualization, analysis
tools to gather statistics from the run, or interactive control tools.

4.5 Implementation of SGT Calculations
The SGT generation step is by far the most time-consuming
processing step in the CyberShake workflow, accounting for
approximately 90% of the CPU-hours. Therefore, we have
adapted AWP for CyberShake, using the GPU solver to accelerate
the process of calculating SGTs (hereafter abbreviated AWP-
SGT). We implemented two effective IO communication
schemes for calculating SGTs. The first uses serial IO with the
velocity mesh partitioned in advance. The second utilizes run-time
partitioning inside the solver, using MPI-IO. The code supports
2D decomposition on CPUs, where each processor is responsible
for performing stress and velocity calculations within its own
subgrid of the simulation volume, while allowing GPUs to handle
SGT calculations. This code has been extensively verified by
comparing stress and strain outputs of earthquake sources to those
from a reference model. Such verification is crucial during
optimization and code updates.

4.5.1 Co-scheduling
When the SGT calculations are performed on GPUs, the CPUs on
the same nodes are mostly idle except for handling IO and
communications, which could be a potential waste of the
resources. We present a runtime environment for co-scheduling
across CPUs and GPUs. We motivate this work because the
CyberShake workflow consists of two parts: a parallel AWP-SGT
calculation, and high-throughput reciprocity calculations with
each rupture variation to produce seismograms and intensity
measures of interest. This is described in more detail in section
6.2. Co-scheduling enables us to perform both calculations
simultaneously on XK7 nodes, reducing our time-to-solution and
making efficient use of all available computational resources.

To enable co-scheduling, we launch multiple MPI jobs on XK7
nodes via multiple calls to aprun, the ALPS utility to launch jobs
on compute nodes from a mom node. We use core specialization
when launching the child aprun calls to keep a core available for
GPU data transfer and communication calls, as both the GPU and
CPU codes use MPI. Testing has shown that this approach results
in little to no impact on the GPU performance. To prevent
overloading the mom node with too many simultaneous aprun
calls, we limit the number of child aprun calls to 5-10.

Since calculating a pair of SGTs requires approximately 60 GPU
hours, and the CyberShake post-processing requires about 1000
CPU hours, the post-processing is able to complete on the 15
available CPUs per XK7 node while SGTs are calculated on the
GPUs. We have successfully tested co-scheduling with the first
half of CyberShake post-processing, calculating SGTs on 50
GPUs while performing post-processing with 10 child jobs of 5
nodes each. We anticipate full CyberShake co-scheduling
capabilities in the near future.

4.5.2 Hazard Curve Calculation
PSHA results are typically delivered by hazard curves, which
relate ground motion on the X-axis to probability of exceeding
that level of ground motion on the Y-axis, for a site of interest. To
verify AWP-SGT, we calculated a CyberShake hazard curve
using the GPU version of AWP-SGT, and compared it to a hazard
curve using the CPU version; the two are numerically almost
identical. Calculation of a hazard curve involves SGT timeseries
data from over half a million locations in the volume, providing
rigorous verification.

Figure 7: PSHA hazard curve calculated for the University of
Southern California (USC) site. The horizontal axis represents
ground motion at 3 seconds spectral acceleration, in terms of g
(acceleration due to gravity). The vertical axis gives the
probability of exceeding that level of ground motion. The blue
line is the curve calculated using CyberShake with AWP-
SGT. The dashed lines are hazard curves calculated using
four common attenuation relationships which provide
validation of the CyberShake methodology.

4.6 Verification
We performed a variety of tests to ensure that AWP produces
results comparable in accuracy to those for widely used and
validated SCEC community codes running on HPC systems. We
started with a wave propagation simulation of the magnitude-5.4
Chino Hills earthquake at frequencies up to 2.5 Hz using 128

Keeneland GPUs, with extended sources active for 2.5 seconds
[46]. The results are verified with those from our CPU code,
showing almost identical simulation results.

Comparing the velocities with negligible error is necessary, but
not sufficient for the execution of accurate simulation of ground
motions. Even small errors can accumulate over time if they are
correlated or biased. We then examined further the correction of
the seismograms using the SGT calculations. We demonstrated
that the results from the GPU code and reference model are nearly
identical, in a 1.2 billion mesh point volume for 20K timesteps.

5. PERFORMANCE ANALYSIS
We present the strong and weak scaling results obtained on OLCF
Titan, NCSA Blue Waters and Georgia Tech Keeneland.

AWP has undergone extensive fine-tuning on NVIDIA Fermi
GPUs, but the team has had only limited time to analyze
performance and optimize for NVIDIA Kepler GPUs, like those
in Titan and Blue Waters. We have observed that for small sub-
domain sizes, accessing input arrays through the GPU’s texture
cache sped up the two primary compute kernels by a combined
1.9X. This speed-up is due to a reduction in global memory
transactions. At larger sub-domain sizes, like those used for the
scaling results below, the local data becomes too large for the
texture cache, which negates the benefit of this change. We did
see more modest gains by loading some, but not all, input arrays
through the texture cache. In the future we intend to explore the
use of per-SM shared memory to more selectively stage data
arrays to achieve the same reduction in global memory
transactions. This may have the additional benefit of reducing the
register usage per thread and increasing occupancy.

5.1 Benchmark Machine Specifications
The OLCF Titan is a Cray XK7 supercomputer located at the Oak
Ridge Leadership Computing Facility (OLCF), with a theoretical
peak double-precision, floating point performance of more than
20 petaflops. Titan consists of 18,688 physical compute nodes,
where each compute node is comprised of one 16-core 2.2GHz
AMD Opteron™ 6274 (Interlagos) CPU, one NVIDIA Kepler
(K20X) GPU, and 32 GB of RAM. Two nodes share a Gemini™
high-speed interconnect router, which are connected in a 3D torus
[48]. The Blue Waters system is a Cray XE6/XK7 hybrid machine
composed of AMD 6276 "Interlagos" processors (nominal clock
speed of at least 2.3 GHz), NVIDIA K20X accelerators, and Cray
Gemini interconnect [49]. The Keeneland Full Scale (KFS)
system consists of a 264-node cluster based on HP SL250 servers.
Each node has 32 GB of host memory, two Intel Sandy Bridge
CPU’s, three NVIDIA M2090 (Fermi) GPUs, and a Mellanox
FDR InfiniBand interconnect. The total peak double precision
performance is around 615 TFlops [50].

5.2 Strong Scaling and Weak Scaling
The strong scaling benchmarks were performed on NCSA Blue
Waters and OLCF Titan. The small fixed size benchmark was run
on Blue Waters whereas others were on Titan (Figure 8). The
degradation in performance with the increase of the number of
GPUs is expected, as the application becomes bounded by
communication overhead that arises from less compute work. As
the number of GPUs is increased, so does the outer halo region to
total sub-volume size ratio in proportion, making our application
less effective in overlapping communication and computation.

With regard to weak scaling, the perfect linear speedup was
observed on 90 Keeneland Initial Delivery System (KIDS) nodes
equipped with 3 NVIDIA M2090 GPUs per node, where 10% of

the peak performance was achieved. Figure 9 and Table 1 show
the AWP code’s extraordinary scaling performance with 100%
parallel efficiency for weak scaling from 16 up to 8192 Titan
nodes. In this benchmark, each GPU carries out stencil
calculations for a sub-domain with size 160 × 160 × 2048. The
total number of points in the domain becomes 160 × 160 × 2048 ×
N, where N represents the number of GPUs used. To the best of
our knowledge, this is a record speedup from a highly memory-
bounded scientific application achieved on Cray XK7. Perfect
linear weak scaling indicates that our careful design of
communication model is able to hide communication latency by
computation efficiently.

Notable slowdown was observed in the case of 16,384 nodes,
although we still achieve 93.5% parallel efficiency. Since the
application performs only nearest-neighbor communications, we
would expect continued linear scaling. The source of this
performance degradation is not yet fully understood, but we
believe that the topology of the network may have played a
significant role. We intend to explore the effect of node topology
and evaluate the benefit of topology-aware node placement in the
future.

Figure 8: Speedup of strong scaling on Cray XT7 at ORNL,
with 2D square configuration (Z direction fixed as 2048) for
problem size of 320, 640, 1280 and 5120.

Figure 9: Weak scaling and sustained performance using
AWP-ODC-GPU in single precision. XK7 exceeds XE6
performance by a factor of 4.2. Solid (dashed) black line is
(ideal) speedup on Titan, Rounds/triangle/cross points are
FLOPS performance on Titan/Blue Waters/Keeneland. Solid
round points are FLOPS on Blue Waters XE6. A perfect
linear speedup is observed between 16 and 8,192 nodes. A
sustained 2.3 Pflop/s performance was recorded on 16,384
Titan nodes.

0.306	

3.06	

30.6	

306	

3060	

2	

20	

200	

2000	

20000	

2	 20	 200	 2000	 20000	

T"
lo
ps
	

Sp
ee
du
p	

Number	 of	 GPUs	 vs	 XE6	 	

5.3 Sustained Performance
We calculate the performance by measuring the average time
spent on one time step after running a benchmark test for 2,000
time steps. The number of floating point operations is counted in
the code based on 307 FLOP per mesh point per time step.
Initialization and output writing parts are excluded from this
calculation. The IO time is negligible when time iterations of tens
to hundreds of thousands of time steps are involved. We obtained
a sustained performance estimate of 2.33 PetaFlops on 16,384
Titan GPUs. This was a 2,000 time-step benchmark run of a
problem size of 20,480 × 20,480 × 2,048 or 859 billion mesh
points.

Our main scientific findings using the code were obtained from a
rough-fault simulation with a domain size 416 km × 208 km × 41
km with a spatial resolution of 20 meters at a maximum frequency
resolution of 10-Hz, discretized into 443 billion mesh points. The
size of this run is slightly larger than the record M8 San Andreas
fault simulation [11]. The run took only 5 hours and 30 minutes to
complete 170 seconds of simulation time whereas M8 ran on
approximately 220K CPU cores for 24 hours. We emphasize that
the 10-Hz rough-fault simulation included 6.8 TB input and 170
GB output. To our best knowledge, this is the first sustained
petaflop seismic production simulation to date, and a new record
for earthquake simulation in terms of scale. These results are
particularly remarkable considering that memory-bounded stencil
computations typically achieve a low fraction of theoretical peak
performance.
Table 1: Time-to-solutions and Parallel efficiency

XK7 Nodes
used

Elements
(Thousands)

Wall Clock
Time

Parallel
Efficiency

16 (4 × 4) 838,860 0.1085 100%
32 (4 × 8) 1,677,721 0.1084 100%
64 (8 × 8) 3,355,443 0.1085 100%

128 (8 × 16) 6,710,886 0.1085 100%
256 (16 × 16) 13,421,772 0.1085 100%
512 (16 × 32) 26,843,545 0.1085 100%

1024 (32 × 32) 53,687,091 0.1085 100%
2048 (32 × 64) 107,374,182 0.1084 100%
4096 (64 × 64) 214,748,364 0.1085 100%

8192 (64 × 128) 429,496,729 0.1085 100%
16384 (128 × 128) 858,993,459 0.1159 93.2%

Both the benchmark and rough fault runs produced remarkable
scaling results for the GPU-enable AWP code. We also compared
the performance against CPU systems. The benchmark results
indicate that using GPU accelerators on Cray XK7 improves the
performance by a factor of 5.2 compared to CPU-only usage of
XK7 nodes. Furthermore the performance of XK7 exceeds Cray
XE6 by a factor of 2.5 when 512 nodes are in use. We expect our
code’s performance on XK7 nodes to improve further compared
to XE6 as the number of nodes increases. The reason is that the
CPU code suffers more from the increasing communication costs
because of the lack of effective overlap.

5.4 Time-to-solution and Performance-to-cost
Analysis for CyberShake Calculations
One of the primary motivations of implementing AWP is to
accelerate CyberShake calculations. We are planning to use
CyberShake to calculate a California state-wide seismic hazard
map with a maximum frequency of 1 Hz. When using the heavily
optimized CPU code AWP-ODC, it is expected to require 662

million allocation hours to complete. Our AWP-SGT GPU code
running on XK7 demonstrates a performance improvement of a
factor of 3.7 compared to the CPU code running on XE6. Table 2
provides some detailed comparisons of calculating SGTs on XK7
versus XE6, and demonstrates the saving of 579 millions of
allocation hours when using the accelerated (CPU+GPU) AWP.

Table 2: CyberShake Strain Green Tensor Calculations
CyberShake CPU1only GPU2 only CPU+GPU2

XE61/XK72 nodes 400 400 400
WCT3 per site 10.36 hr 2.80 hr 2.80 hr

Total SUs charged4 662 M 168 M 168 M
Saved in Million SU5 495 M 579 M

1) XE6 node (dual Interlagos); 2) XK7 (Operaton+Kepler K20X); 3) Wall clock time
based on measurements on Cray XE6/XK7 at NCSA for two Strain Green Tensor
calculations per site; 4) Based on total 5000 sites required for the generation of
California state-wide seismic hazard map at a maximum frequency resolution of 1-
Hz; 5) CPU+GPU saving counts the use of XK7 CPUs for post-processing of
seismogram extraction as co-scheduling, involving 6.2 million rupture variations
calculations per site.

6. SCIENTIFIC RESULTS
We have applied these new AWP-ODC-GPU capabilities to
obtain the first 10-Hz deterministic simulation on the Titan system
and the first CyberShake hazard curve on the NCSA Blue Waters
system.

6.1 Ground Motion Up To 10-Hz
High-frequency (>1 Hz) deterministic ground motion predictions
are critical input to performance-based building design. The
accuracy of the simulations is limited by the small-scale
complexity of the source and by high-frequency wave scattering
in the crust. To investigate this problem, we have simulated high-
frequency ground motions on a mesh comprising 443-billion
(20,800 × 10,400 × 2,048) elements in a calculation that includes
both small-scale fault geometry and media complexity.
Specifically, we have computed the ground motion synthetics
using dynamic rupture propagation along a rough fault imbedded
in a velocity structure with heterogeneities described by a
statistical model. We first carried out simulations of dynamic
ruptures using a support operator method [51], in which the
assumed fault roughness followed a self-similar fractal
distribution with wavelength scales spanning three orders of
magnitude, from ~102 m to ~105 m. We then used AWP to
propagate the ground motions out to large distances from the fault
in a characteristic 1D rock model with and without small-scale
heterogeneities. The latter employed the moment-rate time
histories from the dynamic rupture simulations as kinematic
sources. Figure 10 shows snapshots of the rupture surface wave
propagation for crustal models with and without the media
heterogeneities. The fractal roughness is controlled by a Hurst
number, which we set at 0.2, and the size of the heterogeneity by a
standard deviation, which we set at 5%, as constrained by near-
surface and borehole velocity data. Note how the wavefield in the
bottom snapshot is scattered the small-scale heterogeneities,
which generates realistic high-frequency synthetics. A few
seismograms are shown to compare models with and without the
small-scale structure.

The simulation results show realistic features. The acceleration
spectra from the simulation are nearly flat up to almost 10 Hz, in
agreement with theoretical predictions. Moreover, the simulated
response spectra compare favorably with spectra obtained from
the empirical ground motion prediction equations (GMPEs)
currently used by building engineers, which are calibrated to high-
frequency recordings of earthquake ground motions.

Figure 10: Snapshots of 10-Hz rupture propagation (slip rate) and surface wavefield (strike-parallel component) for a crustal
model (top) without and (bottom) with a statistical model of small-scale heterogeneities. The displayed geometrical complexities on
the fault were included in the rupture simulation. The associated synthetic strike-parallel component seismograms are
superimposed as black traces on the surface at selected sites. The part of the crustal model located in front of the fault has been
lowered for a better view. Note the strongly scattered wavefield in the bottom snapshot due to the small-scale heterogeneities.

6.2 Cybershake Hazard Model
PSHA estimates the probability that earthquake ground motions at
a location of interest will exceed some intensity measure, such as
peak ground velocity or peak ground acceleration, over a given
time period. Results are delivered in the form of hazard curves for
a site of interest and hazard maps for a region (see Figure 1).
These kinds of estimates are highly useful for civic planners,
building engineers, and insurance agencies, and, through building
codes, they influence billions of dollars of construction yearly.
As described in the introduction, physics-based PSHA requires
very large ensembles of deterministic forward simulations. SCEC
has developed the CyberShake methodology to incorporate 3D
ground motion simulations into seismic hazard calculations [14].
To calculate a waveform-based seismic hazard estimate for a site
of interest, we begin with UCERF2 [13] and generate multiple
rupture realizations with differing hypocenter locations and slip
distributions (sampled from an appropriate stochastic rupture

model). A geo-referenced mesh of approximately 1.2 billion
points is then constructed and populated with seismic velocity
information from a SCEC Community Velocity Model. A body-
force impulse is placed at the site of interest and the resulting 20K
timestep simulation illuminates the volume, calculating SGTs.
Seismic reciprocity is used to post-process the SGTs and obtain
synthetic seismograms and peak intensity measures for each
rupture variation [43]. These are combined with the UCERF2
rupture probabilities to produce probabilistic seismic hazard
curves for the site using the OpenSHA hazard analysis code [52].
Figure 11 illustrates the CyberShake workflow.

A major computational challenge how to increase the overall
computational efficiency of the CyberShake workflow, which
must combine the execution of the massively parallel SGT
calculations with many embarrassingly parallel post-processing
jobs. We have successfully utilized workflow tools to manage the
data and job dependencies [15]. Looking ahead, we plan to
increase the frequency of the model from 0.5 Hz to 1.0 Hz, which

21 KM

35 KM

Hypocenter

-0.2 0.0 0.2 m/s

10.0

0.005

0.0 m/s

21 KM

35 KM

Hypocenter

-0.2 0.0 0.2 m/s

10.0

0.005

0.0 m/s

will require simulation volumes with eight times the mesh points
and simulations with twice the timesteps. In addition, the new
UCERF3 earthquake rupture forecast, which will be released this
year, will include more numerous and more complex ruptures,
increasing the number of seismograms per site by a factor of
about 15. These computational requirements drive the need for
scalable, heterogeneous approaches to workflow execution.

Figure 11: CyberShake workflow. Circles indicate
computational modules and rectangles indicate files and
databases.
Through an innovative co-scheduling approach, we have shown
how CyberShake can make efficient use of GPUs and CPUs in
heterogeneous systems. By running AWP-SGT on GPUs and
doing high-throughput computations on the CPUs, we are able to
run CyberShake workflows at a scale which now brings a 1-Hz
California-wide CyberShake hazard model within reach.

7. CONCLUSIONS AND FUTURE WORK
We have re-designed the AWP-ODC code to accelerate wave
propagation simulations on GPU-powered heterogeneous systems
An aggressive architecture-oriented optimization has maximized
throughput and memory locality, providing much better
performance than our highly optimized CPU-based code.
Algorithm-level communication reduction, effective overlap of
communication and computation, and scalable IO have produced
a GPU-based AWP code that achieves perfect speedup and a
sustained petaflops capability.

AWP provides scientists, for the first time, with the ability to
simulate ground motions from large fault ruptures to frequencies
as high as 10 Hz in a physically realistic way. We have
demonstrated this capability with simulations that incorporate
both the fractal roughness of faults, which is thought to enhance
the generation of high-frequency seismic waves, and the fractal
heterogeneity of the crust, through which the waves are strongly
scattered. The resulting ground motions compare favorably with
leading GMPEs and provide guidance to further refine high-
frequency simulations.

These results will change how synthetic seismograms are
produced for use in earthquake engineering. Currently, the only
way to compute synthetic seismograms across the full bandwidth
of engineering interest (0.1-10 Hz) is to combine low-frequency
deterministic simulations with high-frequency stochastic
simulations [53] [54] [55]. The latter are obtained from ad hoc
models that match the observed spectral content of the

observations but do not satisfy the anelastic wave equations. The
lack of a physics-based model makes it difficult to transport what
is learned about the high-frequency behavior of one earthquake
into forecasting the effects of future earthquakes. Our research
shows how better physics can be incorporated into solutions of
this problem.
We have also transformed the GPU-powered AWP to calculate
SGTs. Our results show that it can serve as the main
computational engine for CyberShake. The use of the AWP-SGT
code is expected to save up to 500 million hours of computation
required for the proposed statewide CyberShake 3.0 model, in
addition to reducing dramatically the time-to-solution.

In the near future, we will refine our co-scheduling strategy for
the CyberShake calculations to allow full utilization of both CPUs
and GPUs on heterogeneous computational systems such as Blue
Waters and Titan. Factor-of-three reductions in time-to-solution
are anticipated, which will enable on-demand hazard curve
calculations. We also plan to facilitate co-scheduling of in-situ
volume data analysis. We will continue optimization of the GPU
code on Kepler, develop resilience features, and implement
ADIOS for solver check-pointing. Finally, we are in the process
of adding more physics to AWP-SGT simulations, incorporating
more realistic media, different realizations of fault roughness,
plasticity, and other features, which will greatly advance our
objectives to improve the accuracy of seismic hazard analysis.

The GPU-based AWP-SGT code will provide highly scalable
solutions for other problems of interest to SCEC as well as the
wider scientific community, including full-3D waveform
inversions to obtain better velocity models for use in structural
studies of the Earth across a range of geographic scales.

8. ACKNOWLEDGMENTS
We thank Jeffrey Vetter, Matthew R. Norman and Bob Fiedler of
ORNL, Carl Ponder and Roy Kim of NVIDIA, Mitchel D. Horton
of Georgia Tech, Sreeram Potluri and DK Panda of OSU, Didem
Unat and Scott Baden of UCSD, for their major contributions of
technical support; Jack Wells and Judith C. Hills of ORNL, Jay
Alameda and Gregory H. Bauer of NCSA, Bruce Loftis of NICS
for their resource support. The authors acknowledge the Office of
Science of the U.S. Department of Energy (DOE) for providing
HPC resources that have contributed to the research results
reported within this paper through an Innovative and Novel
Computational Impact on Theory and Experiment (INCITE)
program allocation award. Computations were performed on
Titan, which is part of the Oak Ridge Leadership Facility at the
Oak Ridge National Laboratory which is supported by under DOE
Contract No. DE-AC05-00OR22725. NSF XSEDE Compute
resources used for this research are supported by XSEDE under
NSF grant number OCI-1053575. Blue Waters computing
resources was provided by NCSA. Research funding was
provided through XSEDE’s Extended Collaborative Support
Service (ECSS) program, UCSD Graduate Program, Petascale
Research in Earthquake System Science on Blue Waters PRAC
(Petascale Computing Resource Allocation) under NSF award
number OCI-0832698, SCEC’s core program of 2012, NSF
Geoinformatics award: Community Computational Platforms for
Developing Three-Dimensional Models of Earth Structure (EAR-
1226343), and NSF Software Environment for Integrated Seismic
Modeling (OCI-1148493). This research was supported by the
SCEC funded by NSF Cooperative Agreement EAR-0529922 and
USGS Cooperative Agreement 07HQAG0008. The SCEC
contribution number for this paper is 1753.

9. REFERENCES
[1] National Research Council, "National earthquake resilience:

research, implementation, and outreach," National
Academies Press, p. 198, 2011.

[2] D. Komatitsch, S. Tsuboi, C. Ji, and J. Tromp, "A 14.6
billion degrees of freedom, 5 teraflops, 2.5 terabyte
earthquake simulation on the Earth simulator," in
Proceedings of the 2003 ACM/IEEE conference on
Supercomputing (SC), 2003, p. 4.

[3] T. Bui-Thanh, C. Bursteddey, O. Ghattas, J. Martin, G.
Stadler, and L. C. Wilcox, "Extreme-scale UQ for bayesian
inverse problems governed by PDEs," in International
Conference for High Performance Computing, Networking,
Storage and Analysis (SC), Salt Lake City, Utah, 2012.

[4] T. Furumura. (2013, April) Japan Agency for Marine-Earth
Science and Technology. [Online].
http://www.jamstec.go.jp/hpci-sp/strategy/pamphlet_en.pdf

[5] K. B. Olsen, S. M. Day, J. B. Minster, Y. Cui, A. Chourasia,
M. Faerman, R. Moore, P. Maechling, and T. H. Jordan,
"Strong shaking in Los Angeles expected from southern San
Andreas earthquake," Geophysical Research Letters, vol. 33,
no. 7, April 2006.

[6] K. B. Olsen, S. M. Day, J. B. Minster, Y. Cui, A. Chourasia,
D. Okaya, P. Maechling, and T. H. Jordan, "TeraShake2:
spontaneous rupture simulations of mw 7.7 earthquakes on
the southern San Andreas fault," Bulletin of the
Seismological Society of America, vol. 98, no. 3, pp. 1162-
1185, June 2008.

[7] R. Graves, B. Aagaard, K. Hudnut, L. Star, J. Stewart, and T.
H. Jordan, "Broadband simulations for Mw 7.8 southern San
Andreas earthquakes: ground motion sensitivity to rupture
speed," Geophysical Research Letters, vol. 35, no. 22,
November 2008.

[8] J. Bielak, R. Graves, K. B. Olsen, R. Taborda, L. Ramirez-
Guzman, S. Day, G. Ely, D. Roten, T. Jordan, P. Maechling,
J. Urbanic, Y. Cui, and G. Juve, "The ShakeOut earthquake
scenario: Verification of three simulation sets," Geophysical
Journal International, vol. 180, no. 1, pp. 375-404, January
2010.

[9] K. Porter, K. Hudnut, S. Perry, M. Reichle, C. Scawthorn,
and A. Wein, "Forward to the special issue on ShakeOut,"
Earthquake Spectra, vol. 27, no. 2, pp. 235-237, 2011.

[10] Southern California Earthquake Center. (2013, April)
ShakeOut. [Online]. shakeout.org

[11] Y. Cui, K. B. Olsen, T. H. Jordan, K. Lee, J. Zhou, P. Small,
D. Roten, G. Ely, D. K. Panda, A. Chourasia, J. Levesque, S.
M. Day, and P. Maechling, "Scalable earthquake simulation
on petascale supercomputers," in Proceedings of
International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), New Orleans, 2010,
pp. 1-20.

[12] R. Taborda and J. Bielak, "Ground-motion simulation and
validation of the 2008 Chino Hills," Bulletin of the
Seismological Society of America, vol. 103, pp. 131-156,
2013.

[13] E. H. Field, T. E. Dawson, K. R. Felzer, A. D. Frankel, V.
Gupta, T. H. Jordan, T. Parsons, M. D. Petersen, R. S. Stein,
R. J. Weldon II, and C. J. Wills, "Uniform california
earthquake rupture forecast, version 2 (UCERF 2)," Bulletin
of the Seismological Society of America, vol. 99, no. 4, pp.
2053-2107, August 2009.

[14] R. Graves, T. H. Jordan, S. Callaghan, E. Deelman, E. Field,
G. Juve, C. Kesselman, P. Maechling, G. Mehta, K. Milner,
D. Okaya, P. Small, and K. Vahi, "CyberShake: A physics-
based seismic hazard model for southern california," Pure
and Applied Geophysics, vol. 168, no. 3, pp. 367-381, March
2011.

[15] S. Callaghan, E. Deelman, D. Gunter, G. Juve, P. Maechling,
C. Brooks, K. Vahi, K. Milner, R. Graves, E. Field, D.
Okaya, and T. Jordan, "Scaling up workflow-based
applications," Journal of Computer and System Sciences, vol.
76, no. 6, pp. 428–446, September 2010.

[16] P. Chen, L. Zhao, and T. H. Jordan, "Full 3D tomography for
the crustal structure of the Los Angeles region," Bulletin of
the Seismological Society of America, vol. 97, no. 4, pp.
1094-1120, 2007.

[17] C. Tape, Q. Liu, A. Maggi, and J. Tromp, "Seismic
tomography of the southern California crust based on
spectral‐element and adjoint methods," Geophysical Journal
International, vol. 180, no. 1, pp. 433-462, 2010.

[18] P. Chen, T. H. Jordan, and L. Zhao, "Full three‐dimensional
tomography: a comparison between the scattering‐ integral
and adjoint‐wavefield methods," Geophysical Journal
International, vol. 170, no. 1, pp. 175-181, 2007.

[19] J. C. Phillips, J. E. Stone, and K. Schulten, "Adapting a
message-driven parallel application to GPU-accelerated
clusters," in International Conference for High Performance
Computing, Networking, Storage and Analysis, (SC), 2008,
pp. 1-9.

[20] E. H. Phillips, Y. Zhang, R. L. Davis, and J. D. Owens,
"Rapid aerodynamic performance prediction on a cluster of
graphics processing units," in Proceedings of the 47th AIAA
Aerospace Sciences Meeting, vol. 565, 2009.

[21] W. M. Brown, T. D. Nguyen, M. A. Fuentes-Cabrera, J. D.
Fowlkes, P. D. Rack, and M. Berger, "An evaluation of
molecular dynamics performance on the hybrid Cray XK6
supercomputer," in International Conference on
Computational Science, ICCS 2012, Omaha, NE, 2012.

[22] M. A. Clark, P. C. La Plante, and L. J. Greenhill,
"Accelerating radio astronomy cross-correlation with
graphics processing units," Submitted to the International
Journal of High Performance Computing Applications
(IJHPCA), preprint arXiv:1107.4264, 2011.

[23] S. Li, R. Chang, A. Boag, and V. Lomakin, "Fast
electromagnetic integral-equation solvers on graphics
processing units," Antennas and Propagation Magazine,
IEEE, vol. 54, no. 5, pp. 71-87, 2012.

[24] M. Eisenbach, "Future Proofing WL-LSMS: Preparing for
First Principles Thermodynamics Calculations on
Accelerator and Multicore Architectures," 2011.

[25] T. Shimokawabe, T. Aoki, T. Takaki, A. Yamanaka, A.
Nukada, T. Endo, N. Maruyama, and S. Matsuoka, "Peta-
scale phase-field simulation for dendritic solidification on the
TSUBAME 2.0 supercomputer," in International Conference
for High Performance Computing, Networking, Storage and
Analysis (SC), 2011, pp. 1-11.

[26] T. Furumura and L. Chen, "Large scale parallel simulation
and visualization of 3D seismic wavefield using the Earth
simulator," Computer Modeling in Engineering and
Sciences, vol. 6, pp. 153-168, 2004.

[27] P. Moczo, J. Kristek, M. Galis, P. Pazak, and M.
Balazovjech, "The finite-difference and finite-element
modeling of seismic wave propagation and earthquake
motion," Acta Physica Slovaca. Reviews and Tutorials, vol.
57, no. 2, pp. 177-406, 2007.

[28] H. Aochi, T. Ulrich, A. Ducellier, F. Dupros, and D. Michea,
"Finite difference simulations of seismic wave propagation
for understanding earthquake physics and predicting ground
motions: Advances and challenges," in Proceedings of
Computational Physics, 2012.

[29] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L.
Oliker, D. Patterson, J. Shalf, and K. Yelick, "Stencil
computation optimization and auto-tuning on state-of-the-art
multicore architectures," in Proceedings of the 2008
ACM/IEEE conference on Supercomputing, 2008, p. 4.

[30] P. Micikevicius, "3D finite difference computation on GPUs
using CUDA," in Proceedings of 2nd Workshop on General
Purpose Processing on Graphics Processing Units, 2009, pp.
79-84.

[31] D. Michea and D. Komatitsch, "Accelerating a three-
dimensional finite-difference wave propagation code using
GPU graphics cards," Geophysical Journal International,
vol. 182, no. 1, pp. 389-402, 2010.

[32] R. Abdelkhalek, H. Calandra, O. Coulaud, J. Roman, and G.
Latu, "Fast seismic modeling and reverse time migration on a
GPU cluster," in IEEE International Conference on High
Performance Computing & Simulation, HPCS'09, 2009, pp.
36-43.

[33] T. Okamoto, H. Takenaka, T. Nakamura, and T. Aoki,
"Accelerating large-scale simulation of seismic wave
propagation by multi-GPUs and three-dimensional domain
decomposition," Earth, planets and space, vol. 62, no. 12,
pp. 939-942, 2010.

[34] S. Song, T. Dong, Y. Zhou, D. A. Yuen, and Z. Lu, "Sesmic
wave propagation simulation using support operator method
on multi-GPU system," University of Minnesota, Technical
Report 2010.

[35] D. Komatitsch, D. Goddeke, G. Erlebacher, and D. Michea,
"Modeling the propagation of elastic waves using spectral
elements on a cluster of 192 GPUs," Computer Science-
Research and Development, vol. 25, no. 1-2, pp. 75-82,
2010.

[36] M. Rietmann, P. Messmer, T. Nissen-Meyer, D. Peter, P.
Basini, D. Komatitsch, O. Schenk, J. Tromp, L. Boschi, and
D. Giardini, "Forward and adjoint simulations of seismic

wave propagation on emerging large-scale GPU
architectures," in Proceedings of the International
Conference on High Performance Computing, Networking,
Storage and Analysis (SC), Salt Lake City, Utah, 2012, p. 38.

[37] K. B. Olsen, "Simulation of three-dimensional wave
propagation in the Salt Lake basin," University of Utah,
Doctoral dissertation 1994.

[38] C. Cerjan, D. Kosloff, R. Kosloff, and M. Reshef, "A
nonreflecting boundary condition for discrete acoustic and
elastic wave equations," Geophysics, vol. 50, no. 4, pp. 705-
708, 1985.

[39] R. W. Graves, "Simulating seismic wave propagation in 3D
elastic media using staggered-grid finite differences,"
Bulletin of the Seismological Society of America, vol. 86, no.
4, pp. 1091-1106, 1996.

[40] J. O. Blanch, J. O. Robertsson, and W. W. Symes, "Modeling
of a constant Q: methodology and algorithm for an efficient
and optimally inexpensive viscoelastic technique,"
Geophysics, vol. 60, no. 1, pp. 176-184, 1995.

[41] S. M. Day, "Efficient simulation of constant Q using coarse-
grained memory variables," Bulletin of the Seismological
Society of America, vol. 88, no. 4, pp. 1051-1062, 1998.

[42] S. M. Day and C. R. Bradley, "Memory-efficient simulation
of anelastic wave propagation," Bulletin of the Seismological
Society of America, vol. 91, no. 3, pp. 520-531, 2001.

[43] L. Zhao, P. Chen, and T. H. Jordan, "Strain Green’s tensors,
reciprocity, and their applications to seismic source and
structure studies," Bulletin of the Seismological Society of
America, vol. 96, no. 5, pp. 1753-1763, 2006.

[44] D.J. Wald and R.W. Graves, "Resolution analysis of finite
fault source inversion using one-and three-dimensional
Green's functions: 2. Combining seismic and geodetic data,"
Journal of Geophysical Research, vol. 106, 2001.

[45] J. Zhou, D. Unat, D. Choi, C. Guest, and Y. Cui, "Hands-on
performance tuning of 3D finite difference earthquake
simulation on GPU fermi chipset," in Proceedings of
International Conference on Computational Science (ICCS),
vol. 9, Omaha, Nebraska, 2012, pp. 976-985.

[46] J. Zhou, Y. Cui, E. Poyraz, D. Choi, and C. , ICCS 2013,
Barcelona, June 5-7, 2013 (in press) Guest, "Multi-GPU
implementation of a 3D finite difference time domain
earthquake code on heterogeneous supercomputers," in
Accepted to International Conference on Computational
Science (ICCS), 2013.

[47] L. A. Dalguer and S. M. Day, "Staggered‐grid split‐node
method for spontaneous rupture simulation," Journal of
Geophysical Research: Solid Earth (1978–2012), vol. 112,
no. B2, 2007.

[48] Oak Ridge Leadership Computing Facility. (2013, April)
Titan User Guide. [Online].
https://www.olcf.ornl.gov/support/system-user-guides/titan-
user-guide/,.

[49] University of Illinois NCSA. (2013, April) Blue Waters
System Overview. [Online].

https://bluewaters.ncsa.illinois.edu/user-guide

[50] XSEDE. Georgia Tech Keeneland User Guide. [Online].
https://www.xsede.org/gatech-keeneland

[51] Z. Shi and S. M. Day, "Rupture dynamics and ground motion
from 3-D rough-fault simulations," Journal of Geophysical
research, vol. 118, pp. 1-20, 2013.

[52] E. H. Field, T. H. Jordan, and C. A. Cornell, "OpenSHA: A
developing community-modeling environment for seismic
hazard analysis," Seismological Research Letters, vol. 74,
no. 4, pp. 406-419, 2003.

[53] R. W. Graves and A. Pitarka, "Broadband ground-motion
simulation using a hybrid approach," Bulletin of the
Seismological Society of America, vol. 100, no. 5A, pp.
2095-2123, 2010.

[54] P. M. Mai, W. Imperatori, and K. B. Olsen, "Hybrid
broadband ground motion simulations: combining long-
period deterministic synthetics with high frequency multiple
S-to-S back-scattering," Bulletin of the Seismological Society
of America, vol. 100, no. 5A, pp. 2124-2142, 2010.

[55] J. Schmedes, R. J. Archuleta, and D. Lavallée, "Correlation
of earthquake source parameters inferred from dynamic
rupture simulations," Journal of Geophysical Research: Solid
Earth (1978–2012), vol. 115, no. B3, 2010.

[56] J. Zhou, U. Didem, D. Choi, C. Guest, and Y. Cui, "Hands-
on performance tuning of 3D finite difference earthquake
simulation on GPU fermi chipset," in Proceedings of
International Conference on Computational Science (ICCS),
vol. 9, Omaha, Nebraska, 2012, pp. 976-985.

