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[1] Robust absorbing boundary conditions are central to the utility and advancement of
3-D numerical wave propagation methods. It is in general preferred that an absorbing
boundary method be capable of broadband absorption, be efficient in terms of memory
and computation time, and be widely stable in connection with sophisticated numerical
schemes. Here we discuss these issues for a promising absorbing boundary method,
perfectly matched layers (PML), as implemented in the widely used fourth-order accurate
three-dimensional (3-D) staggered-grid velocity-stress finite difference (FD) scheme.
Numerical results for point (explosive and double couple) and extended sources, velocity
structures (homogeneous, 1-D and 3-D), and different thickness PML zones are excellent,
in general, leaving no observable reflections in PML seismograms compared to the
amplitudes of the primary phases. For both homogeneous half-space and 1-D models,
typical amplitude reduction factors (with respect to the maximum trace amplitude) range
between 1/100 and 1/625 for PML thicknesses of 5–20 nodes. A PML region of thickness
5 outperforms a simple exponential damping region of thickness 20 in a homogeneous
half-space model by a factor of 3. We find that PML is effective across the simulation
bandwidth. For example, permanent offset artifacts due to particularly poor absorption of
long-period energy by the simple exponential damping are effectively absent when PML is
used. The computational efficiency and storage requirements of PML, compared to the
simple exponential damping, are reduced due to the need for only narrow absorbing
regions. We also discuss stability and present the complete PML model for the 3-D
velocity-stress system. INDEX TERMS: 0902 Exploration Geophysics: Computational methods,

seismic; 3230 Mathematical Geophysics: Numerical solutions; 7212 Seismology: Earthquake ground motions
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1. Introduction

[2] A large variety of absorbing boundary conditions
used in elastodynamics have been presented in the literature.
While most of these conditions are used along the outermost
boundary of the grid [e.g., Clayton and Engquist, 1977;
Higdon, 1986, 1990; Reynolds, 1978; Randall, 1988, and
many others], an important class of absorbers are applied
within regions of finite thickness. A relatively new member
of the latter group is PML (perfectly matched layers).
Presented in 2-D [Berenger, 1994] and 3-D [Berenger,
1996] time domain EM simulations, PML has since been

used extensively in that field. PML has also been incorpo-
rated into a variety of wave propagation algorithms, but its
infusion into elastodynamics has been comparatively slow.
PML was first formulated for the P-SV case in an approach
that utilized potentials in the PML region [Hastings et al.,
1996]. Excellent results were achieved in this 2-D finite
difference scheme; however, its applicability was limited to
models without heterogeneity in the PML regions. Chew
and Liu [1996] formulated and demonstrated PML for 2-D
and 3-D elastodynamics using a leapfrog scheme in homo-
geneous and heterogeneous media, including fluid-solid
interfaces. More recently, a technique for acoustics in
absorptive media was developed for 2-D and 3-D simula-
tions [Liu and Tao, 1997]. It was shown that in the presence
of intrinsic attenuation, an additional time-integrated pres-
sure field term is required to account for the coupling of loss
between the PML and intrinsic absorptions. PML has also
been applied to the poroelastic wave equations in 2-D media
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[Zeng and Liu, 2001; Zeng et al., 2001]. Collino and Tsogka
[2001] have formulated and demonstrated PML in the P-SV
case via the Virieux [1986] finite difference scheme and a
mixed finite element algorithm. Excellent results were
demonstrated in homogeneous and heterogeneous media,
including anisotropy in the finite element scheme.
[3] While the previous finite difference studies have

thoroughly tested PML in unbounded media, the difference
operators were of lower order and a free surface was not
included, which precludes the analysis of PML’s perform-
ance in the presence of surface waves. Therefore we further
examine the efficacy of the PML technique in the case of a
widely used algorithm: a 3-D, staggered-grid, velocity-
stress finite difference scheme. We will conduct our analysis
for the 2–4 implementation (second-order accurate in time
and fourth-order accurate in space), which has become
increasingly popular for simulating ground motion, both
for kinematic [e.g., Olsen, 1994; Olsen et al., 1995; Olsen
and Archuleta, 1996; Graves, 1998; Wald and Graves,
1998; Olsen, 2000; Olsen et al., 2000; Olsen, 2001] and
dynamic [e.g., Olsen et al., 1997; Nielsen and Olsen, 2000;
Peyrat et al., 2001] methods. Additionally, we examine
PML’s applicability to 3-D heterogeneous media.
[4] We have organized our study of PML as follows. In

the next section, the PML formulation and discretization
for the 3-D staggered-grid scheme are explained. The
following section provides results for a number of numer-
ical examples, including PML implementations in homo-
geneous, 1-D and 3-D media, for point (explosive and
double-couple) and extended sources, and comparisons of
the performance and efficiency with the popular Cerjan et
al. [1985] scheme. In the appendices, we review the 3-D
velocity-stress formulation (section A1) and present con-
tinuous and discretized versions of the 3-D PML model
(sections A2 and A3).

2. PML Implementation

2.1. Formulation

[5] The PML model can be formulated through a simple
time domain, equation-splitting procedure. That is, in the
elastic case, each wave field equation is split into perpen-
dicular and parallel components, with a damping term being
added to the perpendicular term [Hastings et al., 1996;
Collino and Tsogka, 2001]. It has been shown that such a
system of split and damped elastodynamic equations pos-
sess two fundamental properties. The first is that the inter-
face between the internal propagation space and the PML
space, in a continuum, is nonreflective, which holds even in
the case of coupled compressional and shear energy [Chew
and Liu, 1996]. The second property is that exponential
attenuation is present in the nonphysical PML region [Chew
and Liu, 1996; Collino and Tsogka, 2001]. The equation-
splitting procedure can also be understood from a complex
coordinate stretching (change of complex variable)
approach [Chew and Liu, 1996; Collino and Tsogka,
2001]. That is, in the case of a complex-plane variable
change that includes an imaginary term, a split equation
results in the time domain. Hereafter, the internal propaga-
tion space (model space less the PML absorbing regions) is
referred to as the interior region or just the interior, and the
PML region/interior region junction is referred to as the

PML interface. Also, PML region thicknesses are specified
in nodes.
[6] Starting with the Cartesian-grid velocity-stress system

(section A1), each equation is split into a parallel and
perpendicular component, based on spatial derivative sep-
aration. That is, the perpendicular equation contains the
spatial derivative term which acts normal to the coordinate
plane of interest and a damping term, and the parallel
equation contains the remaining spatial derivative terms.
Finally, an additional equation is required to sum the results
of the split equations. For the 3-D velocity-stress system, a
PML model can be formulated for each of the three
coordinate directions, providing damping for the bounding
side and bottom regions in a 3-D model space; such an
approach results in 81 equations. In particular, for an X
plane, the perpendicular equations contain the appropriate
perpendicular velocity or stress term, a damping term and
the spatial derivative term (when present) acting in the X
direction. The parallel equations contain the appropriate
parallel velocity or stress term and the spatial derivative
terms (when present) that act in the Y and Z directions
(section A2). Similar systems can be formulated for the Y
and Z planes (section A2). The horizontal edges, vertical
edges and corners require multiple damping terms, which
we reserve for the following discussion on discretization.

2.2. Discretization

[7] Before discussing the PML discretization, we note a
few relevant characteristics of the FD scheme with which
the PML formulation is solved. The scheme solves the 3-D
elastic wave equation in the velocity-stress formulation
[Madariaga, 1976; Virieux and Madariaga, 1982; Virieux,
1986] which we describe in section A1. Our particular
development is for a fourth-order velocity-stress scheme
[Olsen, 1994] and is solved on a regular staggered grid. It
includes a second-order planar free surface, which places
the vertical velocity component (Vz) and the xz (sxz) and yz
(syz) components of the stress directly on the free surface
FS2 of Gottschämmer and Olsen [2001] (see Figure 1). We

Figure 1. Staggered-grid material cell; Vx is located at the
coordinate system origin, and the free surface is located on
the Vz plane. Coordinate directions correspond to geo-
graphic directions X (east), Y (north) and Z (up).
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take the following coordinate directions as positive, as
shown in the FD material cell (Figure 1): east (X), north
(Y) and up (Z).
[8] The PML formulation described above (see also

section A2) can be discretized and solved using the conven-
tional staggered-grid finite difference technique. However,
such an approach does not directly suggest a damping
technique for the corners and edges, nor does PML theory
present an obvious approach. Thus, following Collino and
Tsogka [2001], we present a compact, discretized version of
the 3-D velocity-stress PML equations that provides for
absorption in all 17 PML regions (Figure 2). To form the
discretized version, each variable of the propagation system
is split into three separate perpendicular equations; that is,
each coordinate direction is taken as the perpendicular. This
results in three equations for each wave field variable (four
counting the summation equation), each with a damping
term (section A3). If all three damping terms are nonzero,
then the system is appropriate for damping in corner
regions. If one damping term is equal to zero, then damping
in edge regions is defined. And if only one nonzero damp-
ing term exists, plane region damping is implied. In other
words, in each PML region, a damping term is applied in
the normal direction of each bounding plane. Thus the
compact, discretized system implies a method for applying
the damping terms in all model space regions. The system is
solved directly in the corner and edge regions with appro-
priate damping values for each region. In the plane regions,
two equations result with zero damping; for memory con-

servation, these equations are combined into one parallel
equation as presented in the continuum case (section A2).
[9] Our implementation includes a planar free surface,

which is considered in the vertical edge and the vertical
plane PML regions (X and Y planes). Since the PML
regions are solved using second-order operators, only the
anti-symmetry condition need be considered for the Vz

component; that is, we only need to mirror the szz compo-
nent above the free surface. The stress variables sxz and syz
located at the free surface are defined as zero (see Figure 1).
Thus the solution of the combined PML and interior
systems, in the presence of a free surface, progresses as
follows: (1) update interior velocities and perpendicular and
parallel PML velocities, (2) sum perpendicular and parallel
PML velocities, (3) apply velocity free-surface conditions to
interior region, (4) update interior stresses and perpendicular
and parallel PML stresses, (5) sum perpendicular and
parallel PML stresses, (6) apply anti-symmetry to the szz
component in PML region, (7) apply stress free-surface
conditions to interior region, and (8) repeat.
[10] The final discretization topics to address are the

maximum damping parameter selection and the distribution
of damping values within the PML region. Upon discret-
ization of the PML system, the reflection-free PML inter-
face no longer exists and is supplanted with PML
discretization error that is proportional to the product of
the spatial discretization and the damping contrast [Chew
and Liu, 1996]. Hastings et al. [1996] and Collino and
Tsogka [2001] presented a relation based upon a theoretical
reflection coefficient, the PML region thickness and a
typical medium velocity. Zeng and Liu [2001] and Zeng
et al. [2001] devised a relation that relies on the dominant
source frequency and the PML thickness. We have found
that the basic relation presented by Collino and Tsogka
[2001] serves as a satisfactory guide to compute the
maximum damping value in our 3-D velocity-stress scheme.
However, we prefer a slightly modified version of their
original relation, the primary difference being that we use Vs

(prominent velocity in earthquake simulations) rather than
Vp dependency

do ¼ log
1

R

� �
tVs

nb�h
; ð1Þ

where R is the theoretical reflection coefficient, Vs is the
representative shear velocity, nb is the PML thickness in
nodes and the tuning parameter t in practice ranges from
about 3 to 4 (see Table 1). It is difficult to recommend a
‘best value’ of t in the general case due to absorption
efficiency apparently dependent on wave type as well as on
the structural variation for heterogeneous models. The

Figure 2. Propagation space for FD simulations with the
PML models at the boundary regions; conventional
propagation is carried out in model space interior. In
numbered boundary zones (and complementary zones) the
PML model is invoked. Plane regions require damping in
their normal direction, e.g., PML(x, 0, 0) for plane 1.
Vertical and horizontal edges are damped in both directions
of their bounding planes, e.g., PML(x, y, 0) for vertical edge
4. Corners are damped in all three coordinate directions,
e.g., PML(x, y, z) for corner 7.

Table 1. Simulation Parameters

H1 H2 H3 H4 H5

Interior number of E-W grid points 199 49 99 465 453
Interior number of N-S grid points 199 49 99 160 238
Interior number of vertical
grid points

100 50 50 60 100

Spatial discretization (m) 225 225 225 400 1000
Temporal discretization (s) 0.0175 0.0175 0.0175 0.020 0.055
Highest frequency modeled (Hz) 2 2 0.75 1.0 0.2
PML tuning parameter (t) 3.2 4.0 3.1 3.7 3.7

MARCINKOVICH AND OLSEN: IMPLEMENTING PERFECTLY MATCHED LAYERS ESE 18 - 3



theoretical reflection coefficients are matched with discrete
layer thicknesses as follows [Collino and Tsogka, 2001]:
PML(thickness 5) R = 0.01, PML(10) R = 0.001, and
PML(20) R = 0.0001. In order to easily make use of other
arbitrary PML thicknesses, we express the relation between
the reflection coefficients and the discrete PML widths as a
third-order polynomial. Thus the maximum damping value
for a PML width between 1 and 20 can be given by

do ¼
tVs

�h
c1 þ c2nb þ c3n

2
b

� �
; ð2Þ

where nb is the PML thickness (in nodes), �h is the grid-
spacing, and the polynomial coefficients are c1 =

8
15
, c2 =

�3
100

and c3 = 1
1500

. The selection of the damping parameter
distribution varies among authors [e.g., Hastings et al.,
1996; Chew and Liu, 1996; Liu and Tao, 1997; Zeng and
Liu, 2001; Zeng et al., 2001; Collino and Tsogka, 2001], but
is typically of the form

di ¼ do
i

nb

� �p

; ð3Þ

where i is the node of interest as counted from the PML
interface, and p typically ranges from 1 to 4, with the most

commonly presented value giving a quadratic distribution
( p = 2). We found this value to give the best result in most
cases.

3. PML Numerical Results

3.1. Test Parameters

[11] To test the performance and efficiency of the PML
implementation, we have constructed five different simula-
tion spaces. The first two (H1 and H2, Table 1) are designed
around a half-space (M1, Table 2) and differ only in dimen-
sion. H1 accommodates approximately 28 wavelengths of
propagation, in the horizontal directions, for the highest
frequency in the simulation. The smaller simulation space

Table 2. Velocity Structures

Structure

M1 homogeneous: Vp 5800 (m/s), Vs 3200 (m/s), r 2600 (kg/m3)
M2 1-D: Los Angeles basin crustal profile, Vs clamped to 1200 (m/s)
M3 1-D: SCEC background crustal profile
M4 3-D: SCEC 3-D velocity structure, Vs clamped to 1400 (m/s)

Figure 3. Plan view of the propagation space, including
variable thickness PML regions. Source location is at the
center of the model space with surface-located symmetric
array distributed near the PML zones.

Table 3. Source Parameters

Strike, deg Dip, deg Rake, deg Depth, m

S1 130 53 111 1912.5
S2 67 85 10 1912.5
S3 270 31 98 10500.0
S4 Explosive 1912.5

Figure 4. PML simulation recorded at array location 2
(see Figure 3) using space H1, structure M1 and source S2;
PML region is 10 nodes in thickness. No observable
artificial reflections are observed at the viewing scale.
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(H2) allows for approximately 7 wavelengths of propagation.
The third simulation space (H3) is based on a 1-D profile
(M2) through the Los Angeles basin and was extracted from
the Southern California Earthquake Center (SCEC) 3-D
Reference Structure Version 2.2 [Magistrale et al., 2000].
The minimum shear velocity is clamped to 1200 m/s, and
the maximum compressional velocity is 6185 m/s. A
plan view of the above simulation spaces, along with our
8-station recording array, is shown in Figure 3. We also
designed a model space (H4) to simulate an extended rup-
ture on a 170 km long by 15 km deep San Andreas M 7.5
fault segment rupture in a 1-D rock profile (M3) where the
shear velocities range from 2713 m/s to 4560 m/s. A

detailed description of the source implementation and the
resulting ground motion is given by Olsen [2001]. Finally,
we tested our PML implementation in a fully 3-D hetero-
geneous model space (H5), covering most of southern
California and based on a subset of the SCEC 3-D
Reference Structure Version 2.2 (M4). Its primary features
are the Los Angeles and San Fernando basins, and the
Salton Trough; a portion of the Ventura basin is present in
the north-west corner of the simulation space. The model
also includes a tomography-based background structure
and a variable-depth Moho. For numerical dispersion

Figure 5. PML simulation (source S1, structure M1,
model H1, thick dash) recorded at array locations 1 to 8 (see
Figure 3) with respect to reflection-free reference traces
(thin solid); PML region is 10 nodes in thickness. No
artificial reflections are observed within the array.

Figure 6. Errors for source S1 recorded at array locations
1–8 (see Figure 3) for model H1 and structure M1. PML
zones are of width 5 (X), 10 (Y) and 20 (Z). Errors are with
respect to reference traces, and are magnified 100, 250 and
625 times for the 5, 10, and 20 width PML regions,
respectively.
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considerations, the S wave velocities have been clamped to
1400 m/s, and the maximum P wave velocity in the model
space is 7800 m/s. This particular simulation space accom-
modates about 64 wavelengths of propagation along the
longest axis. Other relevant modeling parameters are listed
in Tables 1 and 2.
[12] We carried out a number of tests in the simulation

spaces described above. Several realistic point-source mech-
anisms were modeled (Table 3), including those after esti-
mates for the 1994 Northridge (S1), the 1999 Hector Mines
(S2) and the 1987 Whittier (S3) main shocks, in H1–H3 and
H5. The H4 and H5 simulation spaces test, notably, PML’s
ability to absorb over a wider range of velocities for a
complex wave field as well as PML’s performance in the
presence of heterogeneity in the PML regions themselves.
The tests for simulation spaces H1–H3 and H5 are
initiated with a Gaussian source time function that pro-
vides for small spectral amplitudes at the maximum
frequency; typically less than 1/100 of the maximum
spectral amplitude. The extended source simulation uses
six isosceles triangular source time functions from the
kinematic inversion results for the 1992 M 7.3 Landers
earthquake by Wald and Heaton [1994]. We propagate
the rupture from the hypocenter (10 km depth) with a
rupture velocity of 85% of the local S wave velocity. We
limit all test results to about 7 grids per shortest S wave
wavelength (GPW). Each of the above simulations was

carried out with sufficient length to record not only the
direct reflections for each seismic phase, but also reflec-
tions from opposing PML regions and corners. Other
relevant source parameters are listed in Table 3.
[13] We now examine the performance of PML as

implemented in the 3-D velocity-stress staggered-grid
scheme. Simulations in homogeneous models for a variety
of sources are examined first, followed by simulations in
the presence of increasingly complex velocity structures,
including extended rupture and 3-D structure tests.

3.2. PML Versus Reference (Homogeneous Case)

[14] The first set of tests take place in simulation space H1
and velocity structure M1. Figure 4 shows source S2 (Hector
Mines strike-slip mechanism) as recorded at array site 2 with
a PML region of thickness 10 (PML(10)). In each of the 3
components (X, Y, Z), no artificial reflections from the
boundaries are observed, indicating that the PML regions
provide sufficient absorption for both the nondispersive
Rayleigh wave as well as the body wave phases. In Figure
5, source S1 (Northridge thrust mechanism) is recorded at
array sites 1–8 and compared with reference traces. No
artificial reflections are observed at any of the array sites.
The reflection-free reference traces were produced by simu-
lating the same event in a large model space with Dirichlet
boundaries placed at a large distance from the source. This
reference model space is capable of producing 25s of

Figure 7. Comparison between PML and Cerjan et al. synthetics recorded at array location 2 (see
Figure 3). PML regions are 10 nodes wide (thick solid) and Cerjan et al. regions are 20 nodes in thickness
(thin solid) with a damping parameter of 0.92. Source is S4 and structure is M1, in space H2. (a) Particle
velocities, (b) amplitude spectra, and (c) normalized residuals. The normalized residuals for PML
(magnified 50 times relative to Cerjan et al.) indicate consistent absorption across the spectrum, whereas
Cerjan et al. seems to provide its best absorption at higher frequencies.
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reflection-free traces and is 749 nodes in the X and Y
directions and 349 nodes deep. For this particular source,
we also examine the PML performance for variable-width
absorbing regions (5, 10, and 20). Figure 6 shows the differ-
ence, with respect to the reference traces, for each of the three
widths. We choose to illustrate the error for all three compo-
nents of motion, for which the error is expected to be similar.
The error traces in the top plot (X component) have been
magnified 100 times, indicating that the PML(5) regions
typically absorb all but 1% of the outgoing energy. Error
traces in the middle plot (Y component) have been magnified
250 times, showing that the PML(10) region allows max-
imum reflections of about 0.4% with respect to the maxi-
mums of the main seismic phases. Similarly, the Z
component error traces for PML(20) (bottom plot) at 625
times magnification shows reduction of the outgoing ampli-
tudes to below 0.16%. In the above homogeneous simula-
tions, the absorption performance of both P and S waves as
well as the nondispersive Rayleigh wave is tested. When
comparing the relative amplitudes of various reflections in
the error traces (e.g., Figure 6), we see that PML effectively
damps all seismic phases present.

3.3. PML Versus Cerjan et al. (Homogeneous Case)

[15] The comparison to a reference model in the previous
section revealed an impressive measure of absolute absorp-
tion by PML. Nevertheless, only superiority compared to
other widely used absorbing boundary conditions with less
than satisfactory performance should provide a reason to
use PML in future applications. Therefore our second set of
simulations compares the efficiency of various width PML
regions to that of such a scheme, a standard Cerjan et al.
absorbing boundary condition (width 20). The reasoning for
choosing the Cerjan et al. scheme for comparison includes its
apparent popularity, lack of instability problems (as opposed
to many other efficient absorbers [see, e.g., Ramahi, 1999;
Imhof, 2002; Simone and Hestholm, 1998; Howell and
Trefethen, 1988], and finally efficiency in connection with
higher-order FD algorithms [Hestholm et al., 1999]. Com-
parison with other popular absorbing boundary conditions or
combinations thereof (for example, seeWu and Fang [1995]
for comparison between and combination of PML and
Higdons condition for EM) may provide additional insight,
but is considered beyond the scope of our study.
[16] The first simulation in this series tests the absorption

of broadband energy in the smaller model space (H2) using
the homogeneous structure (M1). An explosive source (S4)
recorded at array site 2 yields dramatic differences between
the Cerjan et al.(20) and PML(10) schemes (Figure 7).
Where the PML based scheme provides excellent absorp-
tion (no visibly reflected energy), the Cerjan et al. results are
comparatively poor (Figure 7a). Examination of the ampli-
tude spectra for the same traces indicates poor Cerjan et al.
absorption across the simulation bandwidth, with the excep-
tion of the highest frequencies (Figure 7b). To determine
how each scheme is performing as a function of frequency,
we computed normalized residuals at each frequency SA( f )
(Figure 7c)

SA fð Þ ¼ RA fð Þ � DA fð Þj j
RA fð Þ ; ð4Þ

where RA is the reference amplitude spectra andDA is the test
amplitude spectra. The normalized residuals suggest that on
average PML (magnified 50 times relative to Cerjan et al.)
provides consistent absorption across the simulation band-
width. Figure 8 gives comparative error results, with respect
to reference traces, for a larger model space (H1), structure
(M1) and source (S1). The error records are given at site 8 for
PML(5), PML(20) and Cerjan et al.(20). In this case, PML(5)
provides superior results to Cerjan et al. by a factor of 3 or
more. Finally, Figure 9 shows snapshots of PML and Cerjan
et al. (widths 20) before (Figure 9a) and after (Figure 9b) the
main seismic phases (P wave and S/Rayleigh waves) have
left the simulation space. The Cerjan et al. scheme shows
strong reflections from the boundaries, whereas PML results
in no visible reflections. The model space, structure and
source in this simulation were H1, M1 and S4, respectively.

3.4. One-Dimensional Tests

[17] We next examine the performance of PML(10) in a
1-D velocity structure, for which reference traces are also

Figure 8. Error for PML and Cerjan et al. simulations
recorded at array location 8 (see Figure 3). PML width 5
(medium solid) and 20 (thick solid) are compared to Cerjan
et al. of width 20 (damping parameter 0.92, thin solid).
Even the narrow PML region provides superior absorption
over Cerjan et al. by a factor of 3 or more. Source is S1 and
structure is M1, in larger space H1.
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computed. As mentioned previously, the 1-D profile
through the LA basin and crust should serve as a suffi-
ciently difficult (and realistic) test (Vs clamped to 1200 m/s,
maximum Vp = 6185 m/s) using the single PML damping
profile. In Figure 10 we show results for source S2 recorded
at site 1 (X, Y and Z components) in model H3 and
structure M2. As in the homogeneous case, no artificial
reflections are observed at the viewing scale. Note that the
performance of PML in the 1-D structure results, in
addition to the direct phases, is challenged by dispersive
surface waves (Rayleigh and Love) starting to emerge
around 15 s in the records. Figure 11 shows the 1-D
simulation results at all array sites, along with the reference
traces and corresponding error (magnified 50 times). In this
particular simulation space, typical reduction factors are
about 1/200; although, a few low amplitude traces show
reduced absorption. In general, the 1-D results are some-
what degraded as compared to the homogeneous tests. This
is expected, as the single PML damping profile can only be
constructed for an average or typical media velocity, even
though a wide range of velocities are present in the

structure. In the Discussion section, we describe a possible
method to improve PML’s performance in the presence of
heterogeneous media.
[18] Also in a 1-D structure (M3), results are presented

for an extended rupture simulation (simulation space H4,
Figure 12). Results for PML(10) and Cerjan et al.(20) are
given at three sites adjacent to the fault. In addition,
reference traces are superimposed at sites 1 and 2. These
reference traces contain 50s (site 1) and 43s (site 2) of
reflection-free traces computed in a model with dimen-
sions 865 (X) by 800 (Y) by 442 (Z). Figure 12 shows
excellent agreement between PML and reference traces
while the Cerjan et al. results differ by up to a factor of
two, both during the main rupture pulse and later
arrivals. Notice also the permanent offset artifact of the
velocity traces caused by the Cerjan et al. condition,
which is not observed using PML; examination of the
amplitude spectra reveals large differences between Cer-
jan et al. and the reference at low frequencies (<0.5 Hz).
These results suggest that PML is able to significantly
improve ground motion estimates for extended rupture

Figure 9. Explosive source (S4) wave field recorded on the free surface (model H1, structure M1) at 2
and 12 s. Snapshot set (a) is for PML(20) and snapshot set (b) is for Cerjan et al. (width 20). Snapshots at
2 s are amplified by a factor of 2 and snapshots at 12 s are amplified by 40. Note the large artificial
reflections in the Cerjan et al. results. Snapshots depict the L2 norm of the three velocity components.
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simulations, as compared to other layered absorbing
boundary conditions.

3.5. Three-Dimensional Test

[19] Considering the widespread use of FD schemes for
wave propagation in heterogeneous media, the final simu-
lation results we present are for PML in a 3-D velocity
structure (SCEC). As discussed previously, the 3-D struc-
ture simulation makes use of source S3 in structure M4 and
in simulation space H5. Unfortunately, construction of
reference traces for the complex structure case, i.e., for
3-D structure that extends to the simulation boundaries, is
difficult. Thus, in this case, we simply compare results with
that of Cerjan et al. A surface plan view of the clamped
(1400 m/s) 3-D S wave velocity structure is shown in Figure
13, and PML(10) and Cerjan et al. (width 20) results are
shown in Figure 14. At site 8 (northwest corner) boundary
artifacts give rise to significant differences between the
PML and Cerjan et al. waveforms, most notably that the
primary phases on the latter are visibly influenced by
spurious energy. At site 3, the primary differences between
the waveforms are the result of trailing reflections in the

Cerjan et al. traces. Similar differences are observed at the
remaining array sites.

3.6. Efficiency

[20] The PML condition requires little additional compu-
tational time, when compared to other layered schemes, e.g.,
Cerjan et al. However, due to the additional parallel and
perpendicular components in the PML absorbing regions,
PML is less efficient in terms of core memory. Although not
representative of the most efficient storage scheme, an
approximate multiplicative factor ( fPML) can be computed
to estimate the memory required of a scheme with PML as

Figure 10. Source S2 (Hector Mines focal mechanism)
recorded at array location 1 (see Figure 3) in the 1-D LA
basin profile structure (M2) and model H3. PML width 10
(thick dash) is compared to reference traces (solid). No
artificial reflections are observed at the viewing scale.

Figure 11. Simulation in Figure 10 shown for all array
locations (see Figure 3). PML width 10 (thick dash) is
compared to reference traces (medium solid). PML error (thin
solid) is shown with corresponding traces and is amplified
50 times.
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compared to a scheme which does not require additional
storage in the absorbing region (e.g., Cerjan et al.)

fPML ¼ 1þ 3nb
1

nx
þ 1

ny
þ 1

2nz

� �
; ð5Þ

where nx, ny and nz represent the number of total nodes in
the three coordinate directions in the model space, and nb

indicates the number of nodes near the boundaries reserved
for the PML regions. The above equation assumes the
presence of a free surface. A simple calculation shows that as
the nodal dimensions increase for fixed width PML regions,
the PML conditions account for a smaller percentage of the
required total memory. However, due to the superb
performance of PML, only thin PML regions are required
to effectively suppress artificial reflections. As shown in

Figure 12. 1-Hz PML(10), Cerjan et al.(20) and reference traces for the extended rupture simulation
and snapshot of rupture for the strike-parallel velocity. The reference traces are only computed to 50 s
(site 1) and 43 s (site 2) due to computational limitations. On the snapshot, the line depicts the surface
fault trace, the triangles indicate the location of recording sites 1–3, and the star shows the epicenter.
Structure is M3 and simulation space is H4. Notice the excellent performance by PML, while Cerjan et al.
generates factor-of-two amplitude error and permanent offset artifacts.
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Table 4 for one of our particular model spaces, the use of
PML results in decreased memory and increased efficiency
for PML thicknesses less than 10 and 20, respectively, as
compared to the Cerjan et al. or other similar schemes.

4. Stability

[21] In order for PML to become widely used in elasto-
dynamic simulations the implementation must be stable for
a wide range of models. It should be noted that some
absorbing boundary conditions have been found to be
unstable with schemes to solve both the electromagnetic
(EM) [Ramahi, 1999] and elastodynamic [Simone and
Hestholm, 1998; Imhof, 2002; Higdon, 1986, 1990] equa-
tions. Instabilities have also been found for PML applied to
EM [Nehrbass et al., 1996] and acoustic [Hu, 2001; Tam et
al., 1998] equations. Teixeira et al. [2001] and Abarbanel
and Gottlieb [1997] showed mathematically that some PML
methods are not strongly well-posed, and that small pertur-
bations in the system can generate instability.
[22] We tested a number of different homogeneous, 1-D

and 3-D velocity structures for stability using our PML
implementation, and found problems only in certain 3-D
media. No stability problems were encountered in any
homogeneous or 1-D velocity structures, including 1-D
velocity structures with large contrasts between layers.
Randomized 1-D media also presented no problem. We
only encountered a problem with instability in certain 3-D
cases where structure with rapidly changing, large velocity
contrasts (gradient magnitude as large as 15) was present in
the PML region itself. In most cases, media smoothing
within the PML prior to propagation was sufficient to
restore stability.

[23] We mention two such smoothing approaches below,
which may be used together or separately. The first techni-
que involves extending the 3-D structure at the PML inter-
face into the PML region; that is, the media value adjacent
to the interface and within the interior region, is extended
perpendicularly toward the boundary edge. We can repre-
sent such a strategy, for extension of parameter x in the Z
direction, as

xi;j;k ¼ xi;j;ko ; ð6Þ

where ko is the value adjacent to the interface and where k
indexes from the interface to the boundary edge. The second
strategy is an example of smoothing the PML media by a
multinode averaging process. We adopted a simple 5-point
operator for smoothing in the plane PML regions. Such an
operator, for parameter x in the Z plane, can be represented as

xi;j;k ¼
1

5
xi;j;k þ xiþ1;j;k þ xi�1;j;k þ xi;jþ1;k þ xi;j�1;k

� �
ð7Þ

and could be used in conjunction with the media extension
operator. The effect of such an approach is to generate a
locally quasi-homogeneous structure at a particular PML
region location. No significant overhead in computational
resources is required for either of the two smoothing
methods.

5. Discussion

[24] The numerical results presented in this study make
use of fourth-order operators in the interior region and
second-order operators in the PML region. In the region
near the PML interface, the operators are allowed to over-
lap. From the fourth-order interior region, operators sample
one to two nodes deep in the PML region, depending on the
wave field variable and location. Similarly, the second-order
PML operators sample one node deep into the interior
region. The mixing of operators at the PML interface

Figure 13. Clamped 3-D SCEC S wave velocity structure shown at the surface, containing a minimum
shear velocity of 1400 m/s and supporting a maximum frequency of 0.2 Hz.

Table 4. PML Efficiency

Absorbing
Scheme (width)

Cerjan et al.
(20)

PML
(5)

PML
(10)

PML
(20)

Memory (normalized) 1.00 0.79 1.03 1.63
CPU-time (normalized) 1.00 0.41 0.58 1.04
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apparently presents no difficulties; however, it is possible
that improved accuracy may be obtained using fourth-order
operators in the PML regions as well. Chew and Liu [1996]
indicate that the PML error is proportional to the product of
the discretization size and the damping contrast. Further-
more, it has been shown that this error (artificial reflections
from the PML region) is due to the dispersion of the finite
difference scheme [Collino and Tsogka, 2001]. Since
higher-order operators, e.g., fourth-order, have the effect
of mitigating numerical dispersion, we expect the applica-
tion of fourth-order operators in the PML region to generate
increased absorption, beyond that presented here. We con-
ducted a cursory test of this property in a PML(10)
simulation; that is, we compared the absorption results for
simulations in which the grid spacing differed by a factor of

2 in each coordinate direction. In the scheme with reduced
grid spacing, the PML region (width 10) is necessarily half
the actual thickness of the original scheme; however, the
absorption results were similar in both simulations. This
result can likely be attributed to the reduction in numerical
dispersion error in the reduced grid-spacing scheme. To
implement the higher-order PML scheme, two areas need to
be addressed: the free surface for certain PML regions and
the outermost planes of the model space (PML regions). In
the case of the free surface, use of the anti-symmetry
relations to solve for velocity values above the grid is
required [e.g., Gottschämmer and Olsen, 2001]. With regard
to the latter concern, in the case of the fourth-order scheme,
a typical approach is to invoke second-order operators on
one to two nodes nearest the boundary. However, we
believe that the performance of the second-order PML
operators is sufficient for most current applications and
we leave the development of higher-order operators for
future work, if needed.
[25] Finally, we discuss the selection of Vs in equation

(1) in arbitrary models. The current method for computing
the maximum damping parameter (and subsequent damp-
ing value distribution) requires a representative value for
Vs. This is straightforward in the homogeneous case;
however, in media with 1-D and 3-D variations, the
selection of a best value is less obvious. We found that
taking the harmonic average of the minimum and max-
imum Vs values provided an optimal result in our 1-D
simulation. Selection of a representative Vs in the 3-D case
is more difficult, especially in the case of more extreme
3-D structures. One possible method is to initialize a suite
of maximum damping values (damping distributions),
which are based on the range of velocities present at the
PML interface. This would allow the use of media-appro-
priate damping distributions, which may improve the
performance of the PML even more.
[26] We have clearly demonstrated in our analysis that

PML provides good amplitude reduction on both body and
surface waves. Therefore in principle, the source may be
located arbitrarily close to the PML and still generate the
desired amplitude reduction. However, we have detected
some numerical noise in synthetic seismograms recorded
within a few grid points from the closest PML, for source
locations similarly close to the absorbing boundary con-
dition. We therefore recommend further tests if both the
source and receivers are to be located less than 5 grid points
from the closest PML boundary.

6. Conclusions

[27] We have implemented and tested the PML absorbing
boundary condition in a 3-D fourth-order velocity-stress
finite difference scheme, which includes a free-surface.
Simulation results show PML’s efficacy in the presence
of all seismic phases for both explosive and double-couple
sources. PML thickness 5, 10 and 20 typically reduce
amplitudes to 1%, 0.4%, and 0.16%, respectively, of the
maximum trace amplitude, leaving no observable reflec-
tions compared to the primary phases. Comparisons with a
Cerjan et al. scheme suggest that PML is much more
effective in reducing spurious reflections both during and
after the arrival of the primary seismic phases. For exam-

Figure 14. PML width 10 (thick) versus Cerjan et al. width
20 (thin) in a subspace of the SCEC 3-D reference structure.
Cerjan et al. traces appear to be adversely affected by
artificial reflections during (site 8) and after (site 3) the arrival
of the primary phases. See Figure 13 for site locations.
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ple, a PML thickness 5 region reduces amplitudes more
than 3 times compared to a Cerjan et al. thickness 20
region in a half-space. In particular, PML tends to absorb
relatively uniformly across the simulation bandwidth,
including the long periods where the Cerjan et al. boun-
dary condition seems to be less efficient. We show that
synthetic seismograms with PML are in excellent agree-
ment with reference traces at selected sites along an
extended fault rupture. In contrast, the amplitude on the
synthetics computed using Cerjan et al. absorbing boun-
dary conditions are off by up to a factor of two, both
during the main rupture pulse and for later arrivals. More-
over, permanent offset artifacts are generated by the Cerjan
et al. conditions due to particularly poor performance at
low frequencies. Finally, for a realistic 3-D structure the
performance of PML is superior to that by Cerjan et al. in
reducing the amplitude of spurious reflections during and
after the direct arriving phases. The required computation
time for PML is comparable to that of other layered
schemes for a specific thickness, while PML is less
efficient in terms of core memory due to additional
components. However, both computational and storage
requirements are significantly reduced for PML due to
the superior performance for narrow regions. Stability
problems were only encountered for 3-D models with very
large velocity gradients, and smoothing of the structure
within the PML was generally efficient in stabilizing the
wave propagation.

Appendix A: Three-Dimensional Velocity-Stress
and PML Systems

A1. Velocity-Stress System

[28] The 3-D isotropic, elastic velocity-stress system of
equations is given as

@vx
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@x

þ @sxy
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;

where v(x, t) is the velocity vector field, a function of both
position x and time t, s(x, t) is the stress tensor, l(x) and
m(x) are Lamé’s elastic constants, and r is density.

A2. PML Formulations

[29] Modification of the velocity-stress system via the
time domain equation-splitting procedure, for absorption in
the X direction, results in the following PML system
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where ?x indicates the component perpendicular to X, and
kx indicates the component(s) parallel to X [Collino and
Tsogka, 2001]. Similar systems can be formed for absorp-
tion in the Y direction
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and for absorption in the Z direction
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A3. Generalization and Second-Order Discretization

[30] The above systems for absorption in the X, Y and Z
directions can be generalized into a single system appro-
priate for damping on any single plane or combination of
planes, i.e., edges and corners. Such a system for the 3-D
velocity-stress scheme in its discretized form follows
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