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S U M M A R Y
High-frequency seismic ground motion (10+ Hz), as needed for earthquake engineering design
purposes, is largely controlled by the metre-scale structure of the earth’s crust. However, the
state-of-the-art velocity models poorly resolve small-scale features of the subsurface velocity
and density variation. We invert 35 sonic logs (up to 3000 m in depth) in and near Los Angeles
basin, CA, to obtain a statistical description of the small-scale heterogeneities of the basin.
Assuming a von Karman autocorrelation function, our analysis finds that Hurst numbers, ν,
between 0.0 and 0.2, vertical correlation lengths, az , of 15–150 m and standard deviations of
about 5 per cent characterize the variability in the borehole data. We report average parameters
for Los Angeles basin of ν = 0.064 (0.058, 0.069) ± 0.01 (0.006, 0.012) and az = 54 (51.1,
57.6) ± 5.9 (1.79, 9.53) m with 95 per cent confidence intervals listed in the parentheses.
Despite the large depth range of the logs, there is no significant variation of the statistical
parameters with depth. Our analysis of 371 depth-averaged shear wave velocities in the upper
30 m, Vs30, provides only an upper bound of basin scale-length estimates due to the coarse
sampling distance, with a Hurst number of about 0.3 and lateral correlation lengths, ax, of
5–10 km.

Key words: Time-series analysis; Fractals and multifractals; Earthquake ground motions;
Statistical seismology.

1 I N T RO D U C T I O N

Gaining a solid understanding of the expected range of ground
motions from future large earthquakes is imperative so structures
can be properly engineered to withstand this shaking. For example,
crucial lifelines such as railroads, bridges and pipelines span large
horizontal distances across the ground where they experience sig-
nificant variability in seismic velocities down to the smallest scale
lengths. Local site effects can drastically amplify the ground mo-
tion from an earthquake, with prominent examples from the 1989
Loma Prieta earthquake in the Marina District of San Francisco and
the 1985 Michoacan earthquake in Mexico City. Understanding this
small-scale variability is necessary as simulations begin to resolve
seismic wavelengths on the scale length of several metres. Until
recently, fully 3-D physics-based simulation of ground motions has
been limited to around 1 Hz (Olsen et al. 2006, 2008, 2009; Graves
et al. 2008; Roten et al. 2011), while higher frequencies are mod-
elled by stochastic or semi-stochastic approaches (Frankel 2009;
Anderson 2015; Crempien & Archuleta 2015; Graves & Pitarka
2015; Olsen & Takedatsu 2015). Due to a surge in available power-
ful supercomputing resources and parallel/GPU programming, fully
deterministic seismic wave propagation to frequencies of 10 Hz+
is now computationally within reach (Cui et al. 2013; Taborda &

Bielak 2013). Along with better understanding source complexity
(Shi & Day 2013) and nonlinearity (Roten et al. 2014), another
limiting factor in realistic high-frequency ground motion simu-
lations remains in characterizing the small-scale variation (from
metres to tens of metres) of crustal seismic velocities. Current ve-
locity models, for example, the Southern California Earthquake
Center (SCEC) Community Velocity Model (CVM)-S 4.0 (Magis-
trale et al. 2000; Kohler et al. 2003), CVM-H 11.9 (Süss &
Shaw 2003) and CVM-SI 4.26 (Lee et al. 2014) insufficiently
resolve the small-scale variability known to exist in the earth’s
crust.

Due to large data acquisition costs at metre-scale resolution, it is
not feasible to resolve the small-scale structure using direct mea-
surements. Instead, the small-scale heterogeneities may be described
by their two-point statistics (i.e. their spatial variability). While sta-
tistical representations of small-scale heterogeneities naturally do
not include the actual physical locations of the short-wavelength
velocity and density variations, ensembles of ground motion simu-
lations computed using such distributions should reflect the correct
average and variability observed in strong-motion recordings. A
requirement for the simulated ground motion level and variabil-
ity to be realistic is to use constraints from the statistics of actual
small-scale variation observed in the earth’s crust.
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Frankel & Clayton (1986) showed that the von Karman auto-
covariance function is well suited for characterizing the statistical
variation of crustal heterogeneities. The functional form of the von
Karman autocovariance function
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where ν is the Hurst exponent, a is the correlation length,
Kν is the modified Bessel function of order ν, �(ν) is
the gamma function and σ 2 is the variance with Fourier
transform
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where E is the Euclidean dimension. Previous works have con-
strained the values of the von Karman parameters—the correlation
length a, Hurst exponent ν and standard deviation σ from different
data sets, such as sonic logs, digitized geological maps and seis-
mic reflection data (Holliger & Levander 1992; De et al. 1994;
Levander et al. 1994; Wu et al. 1994; Holliger 1996, 1997; Pullam-
manappallil et al. 1997; Dolan et al. 1998; Nakata & Beroza 2015).
These studies report a wide range of Hurst exponents, 0.0–0.5, and
correlation lengths between 30 and 300 m in the vertical direction,
and horizontal to vertical anisotropy (H/V) between about 2 and 5.
We attribute the wide range of parameters to the type of data from
which the von Karman parameters were derived, and their analy-
sis. We find upper crustal sonic logs tend to produce lower Hurst
exponent estimations (Holliger 1996; Dolan et al. 1998) as com-
pared with lower crustal data (Holliger & Levander 1992). There
remains some disagreement between correlation lengths observed
in the data, which appears to be related to whether the authors
modelled residuals or velocities (Pullammanappallil et al. 1997;
Dolan et al. 1998) or used cross-correlation versus spectral meth-
ods (Wu et al. 1994; Pullammanappallil et al. 1997; Dolan et al.
1998; Nakata & Beroza 2015). In this study, we aim to quantify
the stochastic small-scale variability observed after removing a
depth-dependent mean. For our purposes, we assume the CVMs
to contain the deterministic or background portion of the velocity
structure.

Several studies have also assessed the statistical parameters based
on wave propagation simulations. Hartzell et al. (2010) used ν = 0.0
with a = 5–10 km and σ = 5–10 per cent based on results from
Frankel & Clayton (1986). Jacobsen & Olsen (2011) included sta-
tistical distributions with ν = (−0.5, 0, 0.5), a = 250 m and
σ = 5–10 per cent. Imperatori & Mai (2013) and Bydlon & Dun-
ham (2015) used ν = 0.3 with correlation lengths on the order of
hundreds of metres to kilometres, also including multiscale mod-
els created by the superposition of autocorrelation functions with
multiple correlation lengths. Frankel & Clayton (1986) generated
small-scale heterogeneities with three distinct autocorrelation func-
tions, Gaussian, exponential (corresponding to ν = 0.5) and self-
similar (corresponding to ν = 0.0). By testing end-member cases
(i.e. ν = 0.0, 0.5), Frankel & Clayton (1986) generated von Kar-
man models of small-scale heterogeneities with a preferred value of
ν = 0.0 and correlation lengths between 5 and 10 km. The consid-
erable variation in the preferred parameters of the autocorrelation
found in the studies reflects the poor constraints from the under-
lying data. For example, the correlation lengths suggested from
Frankel & Clayton (1986) (>10 km) were obtained using teleseis-
mic sources, which provide limited constraints at near-field sta-
tions. Other studies included limited or no data constraints in their
modelling.

The primary goal of this study is to understand the spatial statis-
tics of the small-scale variation in the seismic velocity structure
in order to provide the community with a data-derived model of
small-scale heterogeneities in Los Angeles basin. Towards this goal
we use variogram analysis on two separate data sets consisting of
Vs30 measurements and borehole sonic logs to estimate the param-
eters needed to model the small-scale variability for von Karman
autocorrelation functions (Hurst exponent, standard deviations and
correlation length), so we perform our statistical analysis on the
sonic log slowness residuals.

2 M E T H O D S

To estimate the parameters necessary to characterize the lateral
variability observed in Vs30 and the vertical variability observed in
sonic log measurements we introduce two geostatistical methods:
the classical variogram (Matheron 1963) and the moving-window
variogram (Li & Lake 1994). In the following we briefly sum-
marize these two methods, along with the Monte Carlo inversion
that we use to estimate the von Karman parameters from the sonic
logs.

2.1 Classical variogram

We analyse the Vs30 data in the time-domain using the clas-
sical estimate of semi-variance given by Matheron (1963) in
eq. (3).

γ̃ (h) = 1

2N (h)

N (h)∑
i=1

[Z (xi ) − Z (xi + h)], (3)

where N(h) is the number of data points at each lag distance, h
is the lag distance, and Z(xi) is spatial random field at location
xi. This variogram estimator has a vetted history in geostatistics
since its derivation and is frequently used in kriging algorithms
where developing a model of spatial correlation is paramount. The
factor of 2 appears in the denominator accounting for the double
representation of field values (x1, x2) and (x2, x1) in the summation.
The estimate requires binning of the data to specify lag distances,
and we find this estimate performs best when there are near-equal
representations of the data in each bin. We can directly interpret the
correlation length of the velocity structure given an estimate of the
variogram, while we must fit a model to the variogram to determine
the Hurst exponent. Here, we model the variogram (eq. 4) using a
fractional Brownian motion (fBm) form (Li & Lake 1994; Mela &
Louie 2001), based on the results from previous studies (Frankel &
Clayton 1986; Wu et al. 1994; Holliger 1996; Pullammanappallil
et al. 1997; Nakata & Beroza 2015). Following eq. (4), the Hurst
exponent can be estimated as the half-slope of the linear regression
in logarithmic space.

γ̃ (h) = σ 2

a2ν h2ν h < a

γ̃ (h) = σ 2 h ≥ a
(4)

where γ (h) is the semi-variance and a is the correlation length.
This model follows a power law for lags smaller than the cor-
relation length and tends to a semi-variance equal to σ 2 after
the correlation length. The constant σ 2/a2ν implies some inter-
dependence of the two parameters on the resulting semi-variance
estimate.
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2.2 Moving-window variogram

We introduce an alternative variogram estimator (moving-window
formulation) derived by Li & Lake (1994) to analyse the sonic log
measurements:

γ̂N1(h) = 1

n

n∑
i=1

⎧⎨
⎩

1

2m

∑
j∈Di,h

[Z (xi ) − Z (x j )]
2

⎫⎬
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Here, m is the number of data points in Di,h which is the index set
of the data points contained within the moving window, �i,h, which
has size h. n is the total number of data points in the random field, Z.
Z(xi) represents the midpoint of �i,h, and Z(xj) represents each data
point contained within Di,h excluding Z(xi). The inner summation
is over the moving-window while the outer sum is over the entire
random field. For a more detailed explanation and derivation of the
moving-window variogram, please refer to Li & Lake (1994). The
moving-window formulation (eq. 5) provides an estimate utilizing
all available data pairs at all lag distances, whereas other variogram
estimates (such as the Matheron (1963) method, discussed above)
provide fewer data pairs as the observation distance increases re-
sulting in larger variance as the lag distance increases (for example,
see Fig. 1c and Supporting Information).

We choose to use the moving-window variogram method for
the borehole logs as it reduces the variance at large lag distances
which aids our inversion, because the moving-window estimate
provides more consistent mean-squared residual values. The choice
of variogram method does not change the results of the inversion
(see Electronic Supplement). Also, the moving-window variogram
does not always provide a more accurate direct estimate as compared
to the Matheron (1963) method. For example, we find the classical
variogram provides a more stable result for the Vs30 data set.

2.3 Monte Carlo inversion

We incorporate the moving-window variogram method into an in-
version routine which performs a grid search on the parameter
space ν ∈ [0.0, 0.3] and az ∈ [15 m, 150 m], while minimizing the
mean-squared residual between each sonic log variogram and var-
iogram estimated from a synthetic borehole with pre-specified, ν

and az . Here, we assume that each sonic log is a 1D realization of a
single random field of velocity fluctuations representing the entire
Los Angeles basin, and the statistics are stationary. We invert each
borehole independently resulting in an estimate of the von Karman
parameters for each borehole. This allows us to quantitatively assign
uncertainty to our estimation.

To pre-processes the logs before inversion, we first detrend the
data using a long-period median filter providing a zero-mean pro-
file. We find the choice of demeaning filter can significantly affect
the estimation of the correlation length. For example, choosing too
short of a long-period median filter can force the correlation length
to be proportional with the window size of the median filter. Due to
large variability in the data, we find choosing long period median
filters proportional to the borehole depth extent provide more stable
estimates of the correlation length than low-order polynomial re-
gression (see Electronic Supplement or Fig. 1(c) for all variogram
estimates). Next, we apply a short-period median filter to remove
artefacts resulting from the downhole logging procedure using a
median filter with window size of 1.5 m, corresponding to the ap-
proximate resolution of the sonic logging tool. Also, we performed
a sensitivity analysis on the effect of short-period median filtering
the logs and find the results are robust with filter lengths <5 m. We

(a) (b)

Correlation Length

Hurst Exponent = 0.09

(c)

Figure 1. (a) Apal1 Vp sonic log (grey) with long-period median filter
(black), and 1.5 m smoothed log (red). (b) De-trended fluctuation profile
(blue) generated by subtracting the long-period median filter (black) from
the red and grey logs in panel (a) and used to estimate variograms. The fluc-
tuation profile (blue) becomes shorter due to edge effects from the median
filter. We show logs in terms of slowness because all data analysis is per-
formed in the slowness domain. (c) Variogram estimate from the fluctuation
profile (blue) shown in panel (b). The dashed green line is the logarithmic
regression used to estimate the Hurst exponent. We estimate the correlation
length to be between 40 and 90 m, and ν = 0.09. Note the much larger vari-
ance associated with the classical estimate of (Matheron 1963) as opposed
with the moving-window estimate of Li & Lake (1994).

assume that the large spikes seen in the logs are due to measurement
errors resulting from either decoupling with the logging tool and the
host rock or cycle skips, a phenomenon resulting in anomalously
high transit times or low velocities. Figs 1(a) and (b) shows the pre-
processing method performed on one borehole log, namely apal1
located approximately 5 km north of Long Beach, CA, along with
the classical and moving-window variogram (Fig. 1c) estimates for
this single borehole. We perform all statistical analysis in the slow-
ness domain. Notice the larger variance associated with the classical
estimate of semi-variance. For the remainder of the manuscript we
refer to the pre-processed zero-mean logs as fluctuation profiles.

For the inversion, (1) we estimate the semi-variance using
eq. (5) for each borehole. (2) We simulate 500 realizations for each
combination of parameters (ν, az) and estimate the semi-variance
for each realization using eq. (5). (3) We compute the mean-squared
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Figure 2. (a) Map showing the 371 Vs30 measurements used in our variogram analysis. We colour the Vs30 values to provide a visual representation of the
spatial variability. (b) Variogram estimated for the Vs30 measurements in the Los Angeles basin. The dashed green line shows the logarithmic regression used
to estimate the Hurst exponent, ν = 0.33. We estimate lateral correlation lengths between 5 and 10 km.

residual between the borehole variogram and each synthetic vari-
ogram. (4) We average the residuals over all realizations to produce
a single expected mean-squared residual value for each von Kar-
man parameter pair. (5) We accept any value with a mean-squared
residual less than or equal to a tolerance value of 0.01, visually
selected from all the inversion results as the value above which
the mean-squared residual increases significantly (see Supporting
Information Figs S36–S70). This methodology is similar to the in-
version routine used by Holliger (1996).

3 S TAT I S T I C S O F L O S A N G E L E S B A S I N

First, we analyse the lateral variation of near-surface time-averaged
shear wave velocity measurements in greater Los Angeles. We com-
pile 639 Vs30 measurements consisting of 350 measurements incor-
porated in the SCEC CVM-S 4.0 (Magistrale et al. 2000), 102
measurements from Louie (2005, 2007) and 187 measurements
from Yong et al. (2013). Next, we show our inversion results for the
von Karman parameters derived from the 35 Vp sonic logs in Los
Angeles basin.

3.1 Vs30 measurements

Vs30 is defined as

V s30 = 30 m∑ d
V s

, (6)

where d is the layer thickness (m) from the 1-D profile below the site
of interest, and Vs is the depth-dependent S-wave velocity in (m s−1).
We choose a subset of the measurements located near Los Angeles
basin resulting in 371 values used in the analysis (see Fig. 2a) to
maintain consistency with the spatial extent of the sonic log analysis
(see the following section). Since the Vs30 measurements are sparse
and irregularly located, we assign a relatively large bin spacing for
the variogram of 500 m. Also, to obtain a more uniform distribution
of observation pairs at all lag distances, we restrict the maximum
lag to 30 km.

Fig. 2(b) shows the classical variogram estimated from the 371
Vs30 data points. We interpret the correlation length of the hetero-
geneity in the Vs30 values to be approximately 5–10 km (where the
variogram approaches a constant value), and the Hurst exponent to
be ν = 0.33 ± 0.09. This analysis provides an understanding of
the statistical parameters of larger-scale basin features only, as the
Vs30 measurements lack the resolution to constrain smaller-scale
variation. Incidentally, the relatively large Hurst exponent and cor-
relation lengths estimated from the Vs30 data are consistent with the
results by Frankel & Clayton (1986), Imperatori & Mai (2013) and
Levander et al. (1994). We assume the SCEC CVMs have already
accounted for these larger-scale variations, and we plan to constrain
the parameters of the small-scale variations (on the order of tens
of metres) using the densely sampled sonic logs. We note that cur-
rent state-of-the-art CVMs may artificially taper Vs30 values from
the near-surface to deeper sections of the models, possibly biasing
velocity variability in the deeper sections.

3.2 Sonic log measurements

In order to estimate the small-scale structure in Los Angeles basin,
we require much more densely sampled data than that provided
by Vs30 measurements, as discussed above. Velocity logs provide
regularly and densely sampled direct measurements of in situ seis-
mic velocities. We note that our analysis only provides constraints
regarding heterogeneity observed in the vertical direction.

We have acquired 38 Vp sonic logs (Andreas Plesch, private com-
munication, 2012) located throughout the Los Angeles basin, ex-
tending to more than 3 km depth and containing more than 300 000
measurements shown in Fig. 3. Some logs are missing sections of
data, and these values are omitted from the analysis as variograms
do not require the data to be evenly spaced. We also discard three
boreholes due to significant sections of poor data quality or short
sample lengths from which accurate correlation length estimates
within our parameter space are not possible. Due to the spatial
extent of the boreholes, we assume the boreholes provide a rep-
resentative sample of the spatial statistics in Los Angeles basin.
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Figure 3. Map showing 35 deep borehole locations within the Los Angeles basin that are used for the inversion. Borehole apal1 is highlighted.

Figure 4. Results shown for the parameter spaced analysed by our inversion
routine. Here, we bin all accepted von Karman pairs and normalize by the
total number of boreholes. A value of 1.0 indicates that a particular (ν, az)
pair satisfies the acceptance criteria for every sonic log. Likewise, a value
of 0.0 has failed to accept the criterion at every borehole. The von Karman
parameters that agree between more than approximately 90 per cent of the
borehole sonic logs are defined by (ν, az) pairs below the solid line.

Assuming a dense enough network of sonic log measurements, one
could also compute horizontal statistics of depth-averaged sections
of adjacent boreholes allowing for a much higher resolution lateral
study than available from the Vs30 data similar to the analysis by
Wu et al. (1994).

The final inversion result for the 35 boreholes is shown in Fig. 4,
which indicates the percentage of boreholes that can be modelled
by a given von Karman parameter pair within a mean-squared resid-
ual of 0.01. We find that parameters ranging from ν = (0.0−0.2)
and az = (15 m−150 m) represent the variability to an agreement
greater than approximately 90 per cent of all 35 Los Angeles Basin
sonic logs. Fig. 4 shows a trade-off between ν and az meaning that
while large az are acceptable with low ν and vice-versa, large ν

fail to represent the Los Angeles sonic logs even at az = 45 m. On
the other hand, at ν = 0.0, large correlation lengths can provide
seemingly reasonable fits to the data. This is because the semi-
variance at the nugget (or first lag distance) is approximately equal

Figure 5. Selected variograms plotted for different combinations of von
Karman parameters. The shaded grey region represents the range spanned
by all data variograms. We show the variograms representing 100 per cent
acceptance as well as the variogram representing the average von Karman
parameters for Los Angeles basin. Finally, we show the stacked data vari-
ogram computed from an average of each borehole variogram in black. Note
the model with ν = 0.0 and az = 500 m lies within the data variogram range
in Los Angeles basin.

to the total variance in the sonic logs making the transition from
correlated to uncorrelated behaviour hard to distinguish in these
variogram estimates. For example, in Fig. 5 we show that a model
with ν = 0.0 and az = 500 m represents the statistics of the sonic
logs, where the grey region represents the range of all Los Ange-
les basin sonic log variograms. This highlights the interdependence
between az and ν in estimates of semi-variance. Also, we show
variograms for several combinations of ν and az that could rep-
resent reasonable values for Los Angeles Basin. Recent work by
Nakata & Beroza (2015) shows that near Long Beach in Los Ange-
les basin vertical correlation lengths are on the order of 100 m with
an anisotropy factor, ax/az of approximately 5. Based on a boot-
strapped analysis of the average values calculated for each borehole,
we find average values of ν = 0.064 (0.058, 0.069) ± 0.01 (0.006,
0.012) and az = 54 (51.1, 57.6) m ± 5.9 (1.79, 9.53) m, where the
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Figure 6. Depth-dependent variogram computed for 500 m windows of
the sonic log data set. We find no significant depth-dependence of the von
Karman parameters. Each curve represents the stacked variogram over each
specified depth interval.

95 per cent confidence intervals for the mean and standard devia-
tion are shown in the parentheses. We compute the average values
by applying a weighting function to the inversion residuals such
that models with lower residual values are weighted higher. The
electronic supplement shows the mean-squared residuals computed
for each borehole. We also show the raw and processed versions of
the boreholes used in the inversion along with moving-window and
classical semi-variance estimates.

Finally, we analyse the data set to determine if there are any
depth-dependent effects. Towards this goal, we window the data
set in 500 m segments and apply traditional variogram analysis
to the windowed data, meaning no inversion is performed on the
depth-windowed data. For this analysis, we pre-process the logs as
described in the Methods section and stack the resulting moving-
window variogram estimates to produce a single variogram repre-
sentative of a given depth-interval. Fig. 6 shows the results from
our analysis. This figure suggests the lack of any significant depth
dependency for the von Karman parameters. We also find no depth-
dependence for σ . Even though there might be depth-dependency
for some of the parameters at individual boreholes (e.g. σ (z) in
apal1 shown in Fig. 1), on average, our analysis suggests limited
depth-dependence of the von Karman parameters in Los Angeles
basin.

4 C O N C LU S I O N S

We have used 371 Vs30 measurements for Southern California and
35 borehole sonic logs from the Los Angeles basin to constrain
the parameters describing von Karman distributions of small-scale
heterogeneities. The borehole logs indicate that the ranges of ν

and a most representative of the velocity variability are ν = 0.0–
0.2, az = 15–105 m and σ = 5 ± 2.5 per cent. We find aver-
age values of ν = 0.064 (0.058, 0.069) ± 0.01 (0.006, 0.012) and
az = 54 (51, 57) m ± 5.9 (1.0, 9.5) m with 95 per cent confidence
intervals listed in the parentheses. The Vs30 data provide only an
upper bound on the parameters (ν = 0.33 ± 0.09 and ax = 5–10 km)
due to the relatively coarse sampling. We find insignificant depth
dependency of the von Karman parameters from 500 m to 2500 m
depth. These statistical parameters constitute a data-driven model

that can be used for high-frequency simulations of seismic wave
propagation in Southern California. These two separate data sets
constrain the vertical and lateral features, respectively. We hesitate
to infer an anisotropy ratio between the two data sets due to the
large differences in resolution between the Vs30 and borehole data.
We suspect that higher resolution Vs30 data, on say a 50 m grid, may
help refine the results presented here.

The parameters estimated from the sonic log analysis section
of the manuscript only provide information regarding the P-wave
heterogeneity in Los Angeles basin. Directly applying these param-
eters to the S-wave data implies some correlation between these two
measurements. Based on simple elastic theory and analysis of Vp
and Vs sonic logs (Dolan et al. 1998), we expect some correlation
between the two sets of parameters as they are both dependent on
the shear modulus and the density of the material. However, without
access to full-sonic scanner measurements (i.e. P-wave and S-wave
logs) at the same locations, we cannot definitively comment on the
correlation between P-wave and S-wave heterogeneity for this data
set. The level of correlation does have implications for modelling
of the small scale heterogeneities, as uncorrelated or non-perfectly
correlated heterogeneity models must simulate separate realizations
of the stochastic field for both P-wave and S-wave velocities.

Our inversion procedure provides limited resolution of az for
ν ≈ 0.0. This means larger correlation lengths may accurately model
the spatial statistics observed in Los Angeles basin. Also, we find
an interdependence between ν and az for all combinations of von
Karman parameters. Care must be taken to choose appropriate pa-
rameters of ν and az that fall within the accepted range for Los
Angeles basin. The black line in Fig. 4 shows the values of ν and az

that represent accepted von Karman parameters for the majority of
borehole sonic logs in Los Angeles basin. We recommend choosing
parameters that fall within this region, however one could argue for
choosing large values of az for ν = 0.0.
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S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this paper:

Figure S1: (top left) We show the raw sonic log in grey with long-
period moving window filter (black) and short-period median fil-
tered log in red. Here, the red (demeaned and smoothed) log rep-
resents the input to the variogram analysis. (top right) We plot the
input to the variogram as a stand-alone curve. We find there to
be no systematic variability as a function of depth. (middle left)
We show histograms computed from the fluctuation profiles and
(middle right) a probability plot showing a comparison against a
normal distribution. We find the fluctuations to be approximately
normally distributed. (bottom) We show the variogram estimates for
each borehole, where the black curve shows the moving-window
estimate (Li & Lake 1994) and the red curve shows the classical
estimate (Matheron 1963).
Figure S2: Same as Fig. S1, except for borehole arsj_11r.
Figure S3: Same as Fig. S1, except for borehole arsj_14.
Figure S4: Same as Fig. S1, except for borehole arsj_16.
Figure S5: Same as Fig. S1, except for borehole arsj_18.
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Figure S6: Same as Fig. S1, except for borehole arsj_20.
Figure S7: Same as Fig. S1, except for borehole arsj_5.
Figure S8: Same as Fig. S1, except for borehole arsj_8.
Figure S9: Same as Fig. S1, except for borehole arwa_1.
Figure S10: Same as Fig. S1, except for borehole csrc_1.
Figure S11: Same as Fig. S1, except for borehole ope_1.
Figure S12: Same as Fig. S1, except for borehole rowa_2.
Figure S13: Same as Fig. S1, except for borehole soag1-13.
Figure S14: Same as Fig. S1, except for borehole sobc_1.
Figure S15: Same as Fig. S1, except for borehole sobd_1a.
Figure S16: Same as Fig. S1, except for borehole sobudd_1.
Figure S17: Same as Fig. S1, except for borehole socc_1.
Figure S18: Same as Fig. S1, except for borehole soccs_1.
Figure S19: Same as Fig. S1, except for borehole soech_1.
Figure S20: Same as Fig. S1, except for borehole sofc_1.
Figure S21: Same as Fig. S1, except for borehole sofcch_1.
Figure S22: Same as Fig. S1, except for borehole soflc_1.
Figure S23: Same as Fig. S1, except for borehole sog_4a.
Figure S24: Same as Fig. S1, except for borehole sog_6.
Figure S25: Same as Fig. S1, except for borehole sogc_1.
Figure S26: Same as Fig. S1, except for borehole sokc_1.
Figure S27: Same as Fig. S1, except for borehole sokc_1r.
Figure S28: Same as Fig. S1, except for borehole sopc_1.
Figure S29: Same as Fig. S1, except for borehole sosa_1.
Figure S30: Same as Fig. S1, except for borehole souc_1.
Figure S31: Same as Fig. S1, except for borehole sovc_1.
Figure S32: Same as Fig. S1, except for borehole sowc_1.
Figure S33: Same as Fig. S1, except for borehole tohe_1.
Figure S34: Same as Fig. S1, except for borehole tuo_2.
Figure S35: Same as Fig. S1, except for borehole uouspe_1.
Figure S36: We show the average mean-squared residual over 500
realizations for each von Karman parameter pair (ν; az). The grey
shaded region shows the acceptance criterion for the inversion
(0.01), visually selected from all the inversion results as the value
above which the mean-squared residual increases significantly. The
green curve represents the inversion results using a classical es-
timate of the semi-variance while the blue curve represents the
moving-window estimates. We see the overall trend does not change
between the two semi-variance models, but the moving-window
variogram provides a more consistent result allowing for the intro-
duction of an acceptance criterion.

Figure S37: Same as Fig. S36, except for borehole arsj_11.
Figure S38: Same as Fig. S36, except for borehole arsj_11r.
Figure S39: Same as Fig. S36, except for borehole arsj_14.
Figure S40: Same as Fig. S36, except for borehole arsj_16.
Figure S41: Same as Fig. S36, except for borehole arsj_18.
Figure S42: Same as Fig. S36, except for borehole arsj_20.
Figure S43: Same as Fig. S36, except for borehole arsj_5.
Figure S44: Same as Fig. S36, except for borehole arsj_8.
Figure S45: Same as Fig. S36, except for borehole arwa_1.
Figure S46: Same as Fig. S36, except for borehole csrc_1.
Figure S47: Same as Fig. S36, except for borehole ope_1.
Figure S48: Same as Fig. S36, except for borehole rowa_2.
Figure S49: Same as Fig. S36, except for borehole soag1-13.
Figure S50: Same as Fig. S36, except for borehole sobc_1.
Figure S51: Same as Fig. S36, except for borehole sobd_1a.
Figure S52: Same as Fig. S36, except for borehole sobudd_1.
Figure S53: Same as Fig. S36, except for borehole socc_1.
Figure S54: Same as Fig. S36, except for borehole soccs_1.
Figure S55: Same as Fig. S36, except for borehole soech_1.
Figure S56: Same as Fig. S36, except for borehole sofc_1.
Figure S57: Same as Fig. S36, except for borehole sofcch_1.
Figure S58: Same as Fig. S36, except for borehole soflc_1.
Figure S59: Same as Fig. S36, except for borehole sog_4a.
Figure S60: Same as Fig. S36, except for borehole sog_6.
Figure S61: Same as Fig. S36, except for borehole sogc_1.
Figure S62: Same as Fig. S36, except for borehole sokc_1.
Figure S63: Same as Fig. S36, except for borehole sokc_1r.
Figure S64: Same as Fig. S36, except for borehole sopc_1.
Figure S65: Same as Fig. S36, except for borehole sosa_1.
Figure S66: Same as Fig. S36, except for borehole sosan_1.
Figure S67: Same as Fig. S36, except for borehole souc_1.
Figure S68: Same as Fig. S36, except for borehole sovc_1.
Figure S69: Same as Fig. S36, except for borehole sowc_1.
Figure S70: Same as Fig. S36, except for borehole tohe_1.
(http://gji.oxfordjournals.org/lookup/suppl/doi:10.1093/gji/
ggw050/-/DC1)
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